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Abstract
Static analysis of JavaScript has proven useful for a variety of pur-
poses, including optimization, error checking, security auditing,
program refactoring, and more. We propose a technique called type
refinement that can improve the precision of such static analyses
for JavaScript without any discernible performance impact. Refine-
ment is a known technique that uses the conditions in branch guards
to refine the analysis information propagated along each branch
path. The key insight of this paper is to recognize that JavaScript
semantics include many implicit conditional checks on types, and
that performing type refinement on these implicit checks provides
significant benefit for analysis precision.

To demonstrate the effectiveness of type refinement, we im-
plement a static analysis tool for reporting potential type-errors in
JavaScript programs. We provide an extensive empirical evaluation
of type refinement using a benchmark suite containing a variety of
JavaScript application domains, ranging from the standard perfor-
mance benchmark suites (Sunspider and Octane), to open-source
JavaScript applications, to machine-generated JavaScript via Em-
scripten. We show that type refinement can significantly improve
analysis precision by up to 86% without affecting the performance
of the analysis.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis

1. Introduction
Dynamic languages have become ubiquitous. For example, Java-
Script is used to implement a large amount of critical online infras-
tructure, including web applications, browser addons/extensions,
and interpreters such as Adobe Flash. In response to the growing
prominence of dynamic languages, the research community has be-
gun to investigate how to apply static analysis techniques in this do-
main. Static analysis is used to deduce properties of a program’s ex-
ecution behavior; these properties can be used for a variety of use-
ful purposes including optimization [21, 27], error checking [33],
verification [11], security auditing [18, 19], and program refactor-
ing [13], among other uses. However, dynamic languages present a
unique challenge to static analysis, inherent in their very name: the
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dynamic nature of these languages makes creating precise, sound,
and efficient static analyses a daunting task.

In this paper we focus on the static analysis of JavaScript,
though in principle our proposed techniques are applicable to other
dynamic languages as well. Our work is complementary to other re-
cent work on JavaScript analysis, which has focused on understand-
ing a program’s types by proposing various novel abstract domains
to track type information [24, 27]. This focus on types is essential
for JavaScript analysis; because JavaScript behavior relies heavily
on the runtime types of the values being operated on, understanding
types is a necessary prerequisite to understanding many other prop-
erties of program behavior. However, with one exception (discussed
further in Section 5) this prior work on JavaScript analysis has ig-
nored an observation that has been profitably exploited in more tra-
ditional static analyses: that branch conditions (i.e., predicates that
determine a program’s control flow) necessarily constrain the set of
values that can flow into the corresponding branches. This observa-
tion can be used to refine the abstract information propagated by
the static analysis within each branch, thus improving the precision
of the analysis. The details of how this concept works and how it
can be applied to improve the precision of static analysis are ex-
plained in Appendix A (for any analysis in general) and Section 2
(for JavaScript analysis specifically).

While this general observation is well-known in the static anal-
ysis community, applying it specifically to JavaScript raises several
important questions that must be answered to gain any useful ben-
efit: (1) what kinds of conditions provide the most useful informa-
tion for refinement; (2) how prevalent are these kinds of conditions
in realistic JavaScript programs; and (3) how can we best exploit
these conditions, based on their prevalence and usefulness, to sub-
stantially increase the precision of static analysis?

1.1 Key Insight
Our key insight that informs our proposed technique is that the
most prevalent and useful conditional branches are not explicit
in the text of JavaScript program, i.e., these conditions do not
show up syntactically as if or while statements. Rather, they are
implicit in the JavaScript semantics themselves. As an example,
consider the statement var result = myString.length;. While
syntactically there are no conditional branches in this statement,
during execution there are several conditional branches taken by
the JavaScript interpreter:

• Is myString either null or undefined? If so then raise a type-error
exception, otherwise continue execution.
• Is myString a primitive value or an object? If it’s a primitive

value then convert it to an object first, then access the length

property; otherwise just access the length property.
• Does the object (or one of its prototypes) contain a length

property? If so then return the corresponding value, otherwise
return undefined.



Our thesis is that JavaScript static analysis can take advantage of
these implicit conditional executions to refine the type information
of the abstract values being propagated by the analysis, and that this
type refinement can provide significant improvement in analysis
precision.

1.2 Contributions
Our specific contributions are:

• A definition of type refinement for static analysis of JavaScript,
including several variations that use different kinds of condi-
tions to refine types (Section 2).
• An empirical evaluation of the proposed type refinement varia-

tions (Section 4). This evaluation is carried out on a more com-
prehensive set of JavaScript benchmarks than any presented in
previous literature on JavaScript static analysis; it includes not
only the standard SunSpider and V8 benchmark suites, but also
a number of open-source JavaScript applications [1, 3] and a
number of machine-generated JavaScript programs created us-
ing Emscripten [2].
• A set of recommendations for including type refinement in

JavaScript analyses (Section 6). Our evaluation shows that
taking advantage of implicit conditional branches provides
a critical precision advantage for finding type errors, while
the explicit typeof conditional branches exploited in previous
work [20] provide only marginal benefit.

We conclude that type refinement is a promising technique for
JavaScript analysis. This technique’s design is informed by the se-
mantics of JavaScript, enabling it to take advantage of language
features hidden from plain sight and thus gain precision that would
be lost by a technique that does not specifically exploit JavaScript
semantics. Furthermore, type refinement is orthogonal to the ques-
tion of designing abstract domains for JavaScript analysis; this
means that it can profitably be combined with interesting new ab-
stract domains in the future to achieve even better results.

2. The Potential for Refinement in JavaScript
Refinement allows an analysis to safely replace a less-precise an-
swer with a more-precise answer. Appendix A gives suitable back-
ground on static analysis and the concept of refinement; readers
unfamiliar with these notions may wish to refer to that appendix
before continuing. Refinement can apply to many different abstract
domains for analysis, but we hypothesize that, for JavaScript, the
abstract domain of types is a particularly fruitful target for refine-
ment. In JavaScript, as with many dynamic languages, the type of a
value strongly influences the behavior of a program. Thus, refining
type information intuitively would seem likely to improve the pre-
cision of JavaScript static analysis (and our empirical results bear
out this intuition).

This observation means that we should focus our attention on
those conditionals in the JavaScript program that are based on type
information, i.e., conditionals whose truth or falsity constrain the
set of types allowed in the corresponding branches. An obvious
candidate is the set of conditionals that use the typeof operator to
test value’s types. For example, consider the following code:

if ( typeof x == "number" ) { x = x + 42; }

Suppose that immediately before the conditional, the static anal-
ysis has computed that x may be a number or a string. Then inside
the true branch of the conditional, we can safely refine the type of
x to be a number. This strategy is similar to the one employed by
Guha et al [20] (discussed further in Section 5), though they were
attempting to typecheck a subset of JavaScript rather than to im-
prove the precision of JavaScript static analysis.

2.1 Key Insight
While the typeof check is an obvious candidate for refinement, our
key insight is that most of the conditionals involving types aren’t
even syntactically present in the JavaScript program—rather, they
are implicit in the semantics of the JavaScript language itself.

Consider the following statement:

var x = myString[i];

This seemingly simple statement requires a large number of
implicit type checks. Example 1 makes all of these checks explicit.
None of these checks involve typeof. Instead, we see three new
kinds of conditions that involve type information.

Example 1 The semantics of var x = myString[i];

1: if myString is null or undefined then
2: type-error

3: else
4: // convert myString to an object first?
5: if myString is a primitive then
6: obj = toObject(myString)
7: else
8: obj = myString
9: end if

10: // convert i to a string

11: // case 1: i is a primitive
12: if i is a primitive then
13: prop = toString(i)
14: else
15: if i.toString is callable then
16: tmp = i.toString()
17: else
18: goto line 26
19: end if
20: end if

21: // case 2: i is not a primitive, but i.toString() is
22: if tmp is a primitive then
23: prop = toString(tmp)

24: // case 3: i.toString() is not a primitive; try i.valueOf()
25: else
26: if i.valueOf is callable then
27: tmp2 = i.valueOf()
28: else
29: type-error
30: end if

31: if tmp2 is a primitive then
32: prop = toString(tmp2)
33: else
34: type-error
35: end if
36: end if

37: // retrieve the property from the object
38: x = obj.prop
39: end if

One condition (e.g., at line 1 in Example 1) checks whether a
value is either null or undefined. JavaScript performs this check
whenever a program attempts to access a property of a value; if
the value is null or undefined it is a type-error. JavaScript also
performs this check whenever a program attempts to add, update,



or delete a property of some value. We abbreviate this condition as
isUndefNull.

Another condition (e.g., at lines 5, 12, 22, and 31) checks
whether a value is primitive rather than an object, i.e., that it is ei-
ther a number, a boolean, a string, undefined, or null1. JavaScript
performs this check whenever the runtime might need to implicitly
convert a value into another type. We abbreviate this condition as
isPrim.

A third condition (e.g., at lines 15 and 26) checks whether a
value is callable (i.e., that it is actually a function). If so, then the
runtime calls the function; otherwise it can throw a type error ex-
ception. We abbreviate this check for callable as the isFunc condi-
tion.

The key insight of this paper is to focus refinement on those
implicit conditionals—isPrim, isUndefNull, and isFunc—which
abound in JavaScript programs.

2.2 Refinement on Implicit Conditions
JavaScript’s implicit conditions restrict the types of values that
flow along their branches. Refinement can take advantage of these
restrictions as follows:

• isPrim: On the true branch, the checked value must be a primi-
tive value; on the false branch it must be an object.
• isUndefNull: On the true branch, the checked value must be

either undefined or null; on the false branch it cannot be
undefined or null.
• isFunc: On the true branch, the checked value must be a func-

tion; on the false branch it cannot be a function.

The benefits become evident when we consider a static analysis
that does not use refinement for these conditions. For isPrim the
benefit comes from the false branch of the conditional, for example,
line 15 in Example 1. Suppose that on line 12 the analysis computes
that i may be either undefined or an object. In the false branch, i’s
properties are accessed to make method calls (e.g., the .toString

and/or .valueOf methods used to convert objects to primitives).
However, since i may be undefined, the analysis conservatively
computes that these calls may raise a type error exception. If i

had been refined, then the analysis would know that it cannot be
undefined on that branch, and hence there cannot be a type error
exception.

The benefit for isUndefNull and isFunc is more subtle. Consider
the following program fragment:

delete obj.p1;
obj.p2 = 2;

Example 2 The semantics of delete obj.p1; obj.p2 = 2;

1: if obj is null or undefined then
2: type-error
3: else
4: delete obj.p1
5: if obj is null or undefined then
6: type-error
7: else
8: obj.p2 = 2
9: end if

10: end if

The implicit behavior of this fragment is described by the pseu-
docode in Example 2.This example illustrates how implicit checks

1 Confusingly, typeof null == ”object”, but null is not an object.

σ ∈ Store : Variable → P(Type)

PropertyMap : Property → P(Type)

τ ∈ Type : PrimType + ObjType + FuncType

PrimType : num + bool + str + null + undefined

ObjType : PropertyMap

FuncType : Closure × PropertyMap

Figure 1: A simplified version of an abstract domain suitable for
type refinement. The abstract domain Store maps variables to their
abstract types. The abstract domain ObjType maps object prop-
erties to a set of possible types. The abstract domain FuncType
includes a closure (the function to be called) and a property map
(to model the function object).

and exceptions can lead to spurious type-errors. Concretely, the
code performs two sequential property modifications. If obj is null
or undefined, the first statement causes a type-error, and the sec-
ond statement never executes. Otherwise, both statements execute
successfully. An analysis that uses refinement can capture this be-
havior, while an analysis that does not use refinement cannot, as
explained below.

Consider an analysis of this fragment that has imprecise infor-
mation: obj might be null or an object. In this case, the isUndefNull
conditions in lines 1 and 5 of Example 2 are non-deterministic,
and the analysis must conservatively propgate obj’s type to both
branches. An analysis that does not use refinement must then con-
servatively report that two type-errors might occur: at lines 2 and 6.
In reality, if the first statement of the program fragment successfully
executes, so will the second. Refinement can detect this invariant:
in the false branch of lines 4–9, the type of obj cannot be null or
undefined. The isUndefNull condition at line 5 is therefore deter-
ministic, so the analysis will not follow the branch to the error at
line 6. Thus, a refined analysis can give the most precise result for
imprecise data: if a type-error occurs, it occurs only as a result of
the delete statement.

The isFunc check is similar to the isUndefNull check in that the
cost comes from potentially passing unrefined values to successor
nodes, causing the analysis to conservatively compute type error
exceptions whereas an analysis using refinement would not. In gen-
eral, the benefit of refinement in the presence of implicit exceptions
is potentially tremendous: When exploring the path along which
the exception does not occur, the analysis can refine the type of the
value so that it does not cause any more implicit exceptions along
that path. Our empirical evaluation demonstrates that, if an anal-
ysis focuses on these simple implicit type checks, refinement can
dramatically increase the precision of a type-error analysis.

3. Refining Types in JavaScript Analyses
The previous section discusses type refinement at a conceptual
level. In this section we make the discussion concrete, describing
specifically how we perform type refinement for JavaScript. Type
refinement takes place in the context of some particular static anal-
ysis, however type refinement itself is largely independent of that
surrounding context. Therefore we describe type refinement using
a generic type-based abstract domain that would be common to any
JavaScript static analysis, which in the actual analysis can be aug-
mented to provide whatever additional information is relevant.



x ∈ Variable p ∈ Property

a ∈ Access ::= x | x.p
c ∈ Condition ::= typeof(a) = tag | isFunc(a)

| isUndefNull(a) | isPrim(a)

tag ::= ”number” | ”boolean” | ”string”

| ”undefined” | ”object” | ”function”

Figure 2: Type-based conditions for refinement. These conditions
precisely describe the conditonal expressions that trigger refine-
ment. An access is a low-level primitive—the simplest form of a
variable or property access. Our analysis can handle any condi-
tional expression that reduces to this form.

3.1 Type-based Abstract Domain
We now describe the abstract domain that we will be using to de-
scribe type refinement. A JavaScript value can be a primitive value
(i.e., number, boolean, string, undefined, or null), an object, or
a function2. The abstract domain of Figure 1 describes an approxi-
mation of these types. This abstract domain is deliberately simpler
than one that would be used in an actual analysis, in order to make
the exposition more clear by focusing on the aspects relevant to
type refinement. A specific static analysis would augment this ab-
stract domain with more information relevant to the purpose of that
analysis (for examples of such augmented abstract domains, see
[24, 27]).

The abstract domain in the figure represents the relevant type
information that is propagated by the analysis from program point
to program point. An abstract store Store maps variable names to
sets of abstract types. We uses sets of types because, as discussed
in Section A, the analysis is approximating the concrete program
behavior—e.g., the analysis may be able to determine that a vari-
able is either num or undefined, but not be able to narrow the type
information down any further. An abstract object type ObjType
maps property names to their abstract types. An abstract function
type FuncType consists of a closure (the function to be called) and
a property map (to model the fact that JavaScript functions are also
objects).

A type-based static analysis operates over this abstract domain.
Abstract stores flow along the program’s control-flow graph (where
each node is a program statement), and at each statement the analy-
sis interprets the effect of that statement relative to a specific input
σ flowing from that statement’s predecessors, in order to determine
the new σ′ that is the output of that statement, which is then passed
to that statement’s successors. If the analysis encounters a type-
based condition, the analysis may be able to increase the precision
of the information contained in the store by refining the type infor-
mation based on the condition, as described below.

3.2 Identifying Relevant Type-based Conditions
When using type refinement, the analysis interprets a branch condi-
tion as a filter along each branch of the conditional; these filters are
used to refine the type information of the stores passed to each re-
spective branch. In theory, any branch condition that constrains the
types contained in the store can be used to perform type refinement.
However, in practice some conditions are much more complicated
to translate into filters than others. Therefore the analysis designer
must make a tradeoff, by syntactically restricting the set of condi-

2 Functions are also objects, but we distinguish them separately because
some implicit checks are specific to functions.

c ∈ Condition filter(c)

typeof(a) = ”number” {num}
typeof(a) = ”boolean” {bool}
typeof(a) = ”string” {str}
typeof(a) = ”undefined” {undefined}
typeof(a) = ”object” {null} ∪ObjType
typeof(a) = ”function” FuncType

isFunc(a) FuncType

isUndefNull(a) {undefined, null}
isPrim(a) {τp ∈ PrimType}

Figure 3: Filters for refinement conditions. The analysis uses these
filters to refine information along a condition’s branches.

tions from which the analysis extracts filters. The goal is to balance
the additional precision that may be gained by interpreting certain
conditions against the complexity of generating filters from those
conditions.

Figure 2 shows the tradeoff that we have made in our type re-
finement implementation. The figure gives a restricted syntax for
branch conditions (which also makes certain implicit checks ex-
plicit in the syntax rather than implicit in the language semantics).
Our analysis only attempts refinement using conditions that are
contained in this restricted syntax; any other conditions are treated
the same as if the analysis were not doing type refinement. We
chose this syntax to match the categories of explicit and implicit
type checks from Section 2. The typeof condition corresponds to
implicit and explicit checks on type equality. The isFunc condition
corresponds to the implicit check for whether a value is a func-
tion. The isUndefNull condition corresponds to the implicit check
that the JavaScript interpreter performs when accessing or modi-
fying an object property. The isPrim condition corresponds to the
implicit check that the JavaScript interpreter performs as part of
implicit type conversion.

Each condition contains exactly one access. An access can have
two forms: a variable or a direct property access. A direct prop-
erty access x.p gives the precise property name being accessed.
The program need not literally contain a direct access; the program
might specify the property access using a complex expression. As
long as the static analysis can recover the direct access from the
expression, the analysis will attempt to apply refinement. In prac-
tice, for typeof conditions, our analysis handles any conditions of
the form typeof e1 == e2, where e1 and e2 are arbitrary JavaScript
expressions. Our analysis currently does not handle more complex
expressions than these. In particular, it does not handle logical com-
binations of these conditions. In Section 4, we demonstrate that the
conditions in Figure 2 are sufficient to achieve significant increases
in the precision of a type-based analysis; creating useful filters for
more complicated expressions is left to future work.

3.3 Filtering Type Information
Each condition induces a filter that captures the types described
by that condition. Figure 3 defines the filter for each possible
condition. These filters match the description of the explicit and
implicit information encoded in the scenarios from Section 2. The
analysis uses a condition’s filters to refine the values that flow
along the condition’s branches. Specifically, for each type-based
condition c:

1. The analysis interprets condition c relative to an input store σ,
to determine which branches (i.e, the true and false branches)
to execute.



2. The analysis uses the input store σ to retrieve the abstract type
τ of the condition’s access a.

3. When the analysis executes the true branch, it computes a new
abstract type for a as follows: τ ∩ filter(c). In other words,
it intersects the current set of possible types for a with the set
of possible types for a allowed by the branch condition. The
analysis updates the type for a in σ and sends the updated store
along the true branch.

4. When the analysis executes the false branch, it computes a new
abstract type for a as follows: τ − filter(c). In other words, it
removes from the current set of possible types for a those types
which would have meant that the branch condition was true.
The analysis updates the type for a in σ and sends the updated
store along the false branch.

For example, suppose the analysis reaches a condition isUndefNull(a)
with a store that maps a to the abstract type {undefined, num}. In
this case the condition evaluates to both true and false, and so
the analysis must execute both the true and false branches. Along
the true branch, the analysis sends a store that assigns a the type
{undefined, num} ∩ filter(isUndefNull(a)) = {undefined}. Along
the false branch, the analysis sends a store that assigns a the type
{undefined, num} − filter(isUndefNull(a)) = {num}.

3.4 Sound Type Refinement
Type refinement is sound if and only if the filtered set of types sent
to a branch is a superset of all types that might ever be seen at
that branch over all possible concrete executions. Our refinement
rules are sound as long as they are only applied to accesses that
correspond to a single concrete access. This is the standard static
analysis issue of strong vs weak updates: a strong update can
replace a value with a completely new value (potentially more
precise than the previous value), while a weak update can only
replace a value with a weaker (i.e., less precise) value. This issue is
best explained by example.

Suppose that a variable x is mapped by the abstract store to
the set of types {[foo 7→ {num, str}], [foo 7→ {num, bool}]}.
This abstract value means that the type of x may be one or the
other of the two object types, but the analysis does not know
which one. Now suppose that the analysis is considering a branch
condition typeof(x.foo) = ”number”. In the true branch, the type
of x.foo must be num. However, the analysis does not know which
of the two possible object types for x is correct, so it cannot
determine which of the two object types has been constrained by
the condition. Thus, the analysis cannot refine either object type
because if it refines the wrong one, the analysis becomes unsound.
When this is the case, any update to the abstract value for x must
be weak: an analysis cannot replace the abstract value of x with a
more precise version.

If, on the other hand, x refers to only a single possible object
type, e.g., {[foo 7→ {num, str}]}, then an analysis knows that this is
the type constrained by the condition. Thus, the analysis can safely
refine x’s value in the true branch to {[foo 7→ {num}]}. When this
is the case, an update to the abstract value for x can be strong: the
analysis can replace x’s abstract value with a more precise value.
Our analysis applies type refinement—which overwrites abstract
values—only when the refinement corresponds to a strong update.

4. Evaluation
We have implemented our proposed ideas and evaluated their effect
on a static analysis for JavaScript that detects potential type-error
exceptions. We find that an analysis that performs type refinement
on all of the conditions described in Section 3.2 can achieve a
significant increase in analysis precision, with a minimal impact

on the analysis performance. In this section we demonstrate the
effectiveness of our ideas by comparing the type-error analysis
with type refinement relative to the same analysis without type
refinement, for a variety of JavaScript programs.

4.1 JavaScript Analysis Framework
We use the JSAI JavaScript static analyzer for our experiments. The
source code for JSAI can be found at http://www.cs.ucsb.edu/
~pllab under Downloads. JSAI is implemented in Scala version
2.10.1 using the Rhino parser as a front-end [5]. JSAI does not
currently handle eval and related mechanisms for dynamic code
injection, however none of our benchmarks use these mechanisms.

4.2 Benchmark Suite
JavaScript can be written in a number of different styles, and these
styles can affect the usefulness of our type refinement technique.
In order to explore this issue, we select benchmarks from a variety
of application domains. We group the selected bencharks into three
categories:

• standard: These are the standard benchmark suites, SunSpi-
der [6] and Octane [4], that are used by browser vendors to test
the correctness and performance of their JavaScript implemen-
tations.
• opensrc: These are real-world, handwritten JavaScript pro-

grams taken from various open source projects such as LINQ
for JavaScript [3] and Defensive JS [1].
• emscripten: These are machine-generated JavaScript code, ob-

tained by compiling C/C++ programs using the Emscripten [2]
LLVM→JavaScript compiler.

We select seven benchmarks from each category for our evalua-
tion. This benchmark suite is available for download3. The bench-
marks exercise a wide range of JavaScript features, including core
objects and APIs, typed arrays, etc. However, none of these bench-
marks contain eval or equivalent features that allow dynamic code
injection.

Figure 4 shows the distribution of program sizes in each bench-
mark category, based on the number of AST nodes created for the
programs by the Rhino parser. We use AST nodes as the metric
for program size because it correlates with the amount of work
done by the analysis, which operates over AST nodes. The standard
benchmarks, while not large, exercise several key features of the
language, and we use them to test the correctness of our implemen-
tation. The opensrc and emscripten benchmarks are significantly
larger, however it should be noted that the emscripten benchmarks
contain a large amount of unreachable code because the Emscripten
compiler automatically includes a large amount of unused library
code.

4.3 Experimental Methodology
Our base analysis is flow-sensitive and context-sensitive, using a
stack-based 1-CFA context-sensitivity strategy (i.e., it distinguishes
function contexts by the callsite from which the function was in-
voked). The heap model uses static allocation sites to model ab-
stract addresses. Starting from this base type-error analysis, we im-
plement new analyses that incrementally add support for refining
various kinds of conditions. We implement and evaluate a total of
four type-error analyses:

• B: a base flow-sensitive, context-sensitive type-error analysis
that does not perform refinement.

3 Available with the rest of the repository under Downloads at http://
www.cs.ucsb.edu/~pllab.

http://www.cs.ucsb.edu/~pllab
http://www.cs.ucsb.edu/~pllab
http://www.cs.ucsb.edu/~pllab
http://www.cs.ucsb.edu/~pllab


IQR Median Mean

emscripten opensrc standard
0

10,000

20,000

30,000

40,000

50,000

# 
R

hi
no

 A
S

T 
N

od
es

file:///Users/vineethkashyap/Downloads/benchstats.html

1 of 1 6/8/13 4:43 PM

Figure 4: Graph to show size distribution (along y-axis) of bench-
marks in each category (x-axis). Size is measured in terms of num-
ber of JavaScript AST nodes created by the Rhino parser [5]. For
each benchmark category, the blue box gives the 25%-75% quar-
tiles, the blue line gives the range of sizes, and median and mean
are denoted by red and black dots respectively.

• T: the B analysis, extended with type refinement for condition-
als that contain typeof checks.
• TP: the T analysis, extended to include type refinement for

conditionals that contain isPrim checks.
• TPUNF: the TP analysis extended to include type refinement

for conditionals that contain isUndefNull and isFunc checks.

We compare the precision and performance of these analyses
for all the benchmarks in our suite. The metric we use to measure
precision is the number of program locations (i.e., AST nodes) that
the analysis computes may potentially throw type-error exceptions.
The analysis that reports the fewest locations is the most precise.
This metric correlates with the usefulness of a static type-error re-
porting tool: although false positives are inherent in a static analy-
sis, the fewer the number of reported errors (i.e., the fewer the false
positives) the more useful the tool is.

The metric we use to measure performance is execution time
in seconds. We perform a trial for each (analysis, benchmark) pair.
Each trial runs in its own invocation of the JVM. A trial starts with a
warm-up run whose results are discarded. We then perform 10 runs
in sequence and report the mean execution time of these 10 runs.
All our experiments execute on an Ubuntu 12.04.2 LTS machine
with CPU speed of 1.9GHz and 32GB RAM on JVM version 1.7.

4.4 Potential Opportunity for Type Refinement
In this section, we explore the potential benefits of type refine-
ment across our benchmark categories. Type refinement is poten-
tially useful for a given branch condition when the analysis treats
that condition as non-deterministic—i.e., the analysis cannot de-
termine for certain which branch is taken, and so must execute
both branches. To gain an understanding of how many opportu-
nities various flavors of type refinement can take advantage of in
these benchmarks, we distinguish three kinds of branches:

• T: Branches with a typeof check in them.
• P: Branches with a isPrim check in them.
• UNF: Branches with a isUndefNull or isFunc check in them.

We also qualify each kind of branch to be:

• D: a deterministic branch.

category branch kind D NDC NDNC

standard
T 469 87 104
P 2408 141 0
UNF 5692 571 0

opensrc
T 408 82 50
P 2048 80 0
UNF 9456 374 0

emscripten
T 149 14 9
P 595 3 0
UNF 7120 12 0

Table 1: The table that shows for each category of benchmarks, the
kind of branches that the analysis encounters. The numbers rep-
resent number of program locations. The abbreviations are further
detailed in Section 4.4. The way to interpret this table is as follows:
for example, the number under column NDC, and row T represents
the number of program locations with branches that have typeof
checks in them, and are non-deterministic and match our grammar
for type refinement.

• NDC: a non-deterministic branch where the branch condition
follows our restricted syntax for type refinement, and therefore
is a candidate for our type refinement.
• NDNC: a non-deterministic branch where the branch condition

does not match our restricted syntax for type refinement, and
therefore is not a candidate for our type refinement.

Deterministic branches D provide no opportunity for type re-
finement at all. Non-deterministic, non-candidate branches NDNC
could potentially benefit from type refinement if we extended our
technique to include more complicated branches, but do not ben-
efit from our current type refinement implementation. The non-
deterministic candidate branches NDC are the branches that can
benefit from our current implementation of type refinement.

We provide the above information about each qualified kind of
branch for each benchmark category, using the B version of the
analysis, and summarize the data in Table 1. The data shows that
the deterministic branches far exceed the non-deterministic ones.
This might seem surprising, but the reason is because the analysis
must perform a number of checks that are almost always trivially
true. For example, in the code a[0] = 0, the analysis checks that a
is not undefined or null, and in a vast majority of cases this is true,
making this conditional deterministic. This is particularly true of
the emscripten benchmarks, which makes sense because they were
generated from statically-typed languages. Although most branch
points are deterministic, there are still a significant number of non-
deterministic branches that can be exploited by type refinement.

4.5 Effects of Various Type Refinements
Table 2 presents the raw data of our evaluation, including the total
number of type errors reported for each benchmark and the mean
runtimes for the B and TPUNF analyses. Figure 5 extracts and
summarizes the precision results from Table 2.

For the standard and opensrc benchmarks, the T configuration
yields almost no benefit over the B configuration, meaning that do-
ing type refinement over this kind of condition is not useful for re-
ducing type-error exceptions. However, the TP configuration does
yield a fair amount of benefit, and the TPUNF configuration yields
significant benefit. For example, on the cryptobench benchmark in
the standard category the TPUNF configuration reports 253 fewer
type errors than the B, and for rsa in opensrc category, 124 fewer
errors are reported by TPUNF configuration when compared to B.
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Figure 5: Analysis precision (in number of reported type-errors) with and without refinement; lower is better. Benchmarks are grouped by
category. Under the TPUNF analysis with refinement, many of the standard benchmarks (cryptobench to crypto-sha1) and the opensrc
benchmarks (rsa to linq action) achieve more than 50% improvement in precision, relative to the B analysis without refinement.

In general, across benchmarks in the standard and opensrc cate-
gories, most of the benefits arise from type refinement for isPrim,
isUndefNull and isFunc implicit checks.

For the emscripten benchmarks, type refinement does not make
a significant impact on precision—this is expected based on the low
potential available in these benchmarks for type refinement (see
Figure 1), and because there are very few type-errors reported in the
B version already. Because emscripten benchmarks are generated
by compiling from a statically-typed language, the values in the
program tend to be very monomorphic.

From Table 2, specifically the column giving the percentage
increase in time, we observe that type refinements have a negligible
effect on performance.

5. Related Work
Static analysis of dynamic languages is an active research area.
Recent innovations include: a type analysis that relies on an ab-
stract domain that is highly tuned for JavaScript [24]; various
static type inference algorithms [9, 15] and hybrid type inference
algorithms [8], including those that prevent access to undefined
fields [33], enable program optimizations [21, 27], or are suitable
for IDEs [28]; static analyses to secure the Web [17–19]; alias anal-
yses for JavaScript [23, 30] and Python [16]; an analysis to support
JavaScript refactoring [13]; and analysis frameworks for dynamic
languages [7, 26]. All these techniques are orthogonal to type re-
finement. As such, they all may benefit from the idea of refinement
in general, and the analyses for JavaScript would benefit directly
from our contribution.

Two existing techniques for type inference of dynamic lan-
guages rely in particular on a notion of refinement: flow typing [20]
and occurrence typing [31, 32]. Flow typing is a technique for
JavaScript type inference that uses type tags in explicit typeof
conditionals to filter type information [20]. Occurrence typing is
another technique for refining types in branches based on the con-
ditionals that govern those branches [31, 32]. Occurrence typing
takes into consideration a more complex set of filters than flow
typing and type refinement, including the effects of selectors (e.g.,
car). These filters are encoded in a propositional logic that forms
the basis of a type system for Scheme.

Our work, type refinement, leverages a similar insight as does
flow typing and occurrence typing, namely that runtime types in a
dynamically typed language are constrained by branch conditions.
Perhaps the most important distinction between our work and prior

work is the focus on which branch conditions are mined by the
analysis to obtain more precise information. Flow and occurrence
typing focuses on branches that occur in common coding idioms:
explicit behavior, encoded by a programmer, that follows a particu-
lar pattern. The reasoning behind this focus is that the programmers
are communicating information by using an idiom, and automated
understanding can take advantage of this high-level semantic infor-
mation. Type refinement focuses on implicit behavior driven by the
runtime: behavior encoded not by the programmer, but by the se-
mantics of the language itself. The reasoning behind this focus is
that implicit behavior (i.e., the semantics of the language) appears
in every program, and if the analysis can take advantage of this be-
havior the potential benefit can be huge. In the context of type er-
rors, our study shows that a focus on the implicit JavaScript behav-
ior provides more benefit that the focus on only explicit JavaScript
behavior.

Type refinement also differs from prior work in its goals and
methods. The goal of flow and occurrence typing is a sound static
type system for a dynamic language. Hence, Guha et al and Tobin-
Hochstadt et al focus on type soundness (although Guha et al also
validate their work against a corpus of Scheme code). In contrast,
the goal for our work is to provide more precise information for
JavaScript static analyses, which we validate by performing an
evaluation of several variants against a large corpus of JavaScript
programs. Operationally, our work differs from prior work in that
prior work encodes the extra type information in the abstract do-
main, explicitly representing the information and essentially de-
laying the refinement. Ours work filters the results along a path,
essentially applying the refinement immediately.

Type refinement should not be confused with refinement types [11,
14]. Although they have similar names and share other superficial
similarities, they are different concepts. Type refinement is an ac-
tion that occurs during program analysis: it filters the analysis val-
ues that flow along paths in the program’s abstract execution. An
analysis with type refinement is more precise than one without it.
A refinement type is an entity, placed in a program by its author to
express a restriction on the set of values that can be computed by
a particular expression. A type system with refinement types can
prove stronger properties about programs than one without them.

6. Conclusion and Future Work
We show in this work that type refinement is a useful precision opti-
mization for static analysis of JavaScript. In particular, type refine-



Benchmark
Number of TypeErrors Reduction in Mean Runtime (s)

Slowdown
B T TP TPUNF TypeErrors B TPUNF

cryptobench 450 448 321 197 56% 47.46 46.30 −2.4%
3d–raytrace 87 87 84 35 60% 3.92 4.07 4%

access–nbody 43 43 43 6 86% 0.41 0.41 0%

splay 55 55 55 31 44% 0.78 0.78 0%

richards 73 73 62 45 38% 2.23 2.44 9%

3d–cube 60 60 60 49 18% 3.77 3.72 −1%
crypto–sha1 0 0 0 0 0% 0.30 0.29 −3%

standard 768 766 625 363 53% 8.41 8.29 −1.4%

rsa 148 148 129 24 84% 10.73 10.46 −3%
aes 79 79 64 23 71% 0.82 0.81 −1%
linq dictionary 102 102 102 66 35% 81.00 79.35 −2%
linq aggregate 66 66 33 31 53% 308.29 314.23 2%

linq functional 101 101 88 87 14% 530.94 536.41 1%

linq enumerable 17 17 17 17 0% 85.55 84.49 −1%
linq action 11 11 11 11 0% 21.61 21.99 2%

opensrc 524 524 444 259 51% 148.42 149.68 −1%

lzma–full 12 12 9 5 58% 0.39 0.39 0%

life 4 4 4 4 0% 1.53 1.61 5%

fannkuch 4 4 4 4 0% 1.97 2.01 2%

helloworld 4 4 4 4 0% 1.46 1.47 1%

helloworld–fast 4 4 4 4 0% 1.44 1.38 −4%
hashtest 4 4 4 4 0% 3.66 3.73 2%

fasta 4 4 4 4 0% 3.21 3.50 9%

emscripten 36 36 33 29 19% 1.95 2.01 3%

Table 2: Table summarizing the precision and performance benefits of various type refinement optimizations. For each benchmark, we provide
the number of type-errors reported by the analysis under the four configurations (B, T, TP and TPUNF—columns 2–5), the percentage
reduction in number of type errors reported when run with TPUNF version over the B version (column 6), the mean runtime in seconds
when run with B and TPUNF versions (columns 7 and 8, respectively), and the percentage increase in time taken of TPUNF version over B
version (column 9). We also summarize for each benchmark category, the total number of error reports across benchmarks in that category
for each version of the analysis, and the mean runtime for running the analysis under B and TPUNF versions across the benchmarks in that
category. The mean performance data has a relative standard deviation of at most 30%.

ment for implicit conditionals in JavaScript can have a significant
impact on precision (upto 86% for a static type-error client). We
also show that type refinement does not cause any adverse perfor-
mance impact.

We can do type refinements only if the refinement can be a
strong update, thus, we can increase the precision due to type re-
finement by implementing orthogonal techniques that can increase
the number of strong updates. We are currently exploring recency
abstraction [10, 22], which is a technique that can increase the num-
ber of strong updates in the analysis. It would be interesting to study
the effect of combining type refinement with recency abstraction.

We would also like to extend our type refinement to more com-
plicate conditionals, and explore how far we can increase precision
benefits without affecting adversely performance.

A. Background on Analysis and Refinement
This section provides a high-level overview of program analysis for
those who may be unfamiliar with its terminology and tradeoffs. It

also describes a general notion of refinement in static analysis. A
reader who is familiar with the standard frameworks of dataflow
analysis [25] or abstract interpretation [12] should feel free to skip
this section.

Static program analysis computes invariants about a program’s
behavior: things that are guaranteed to always happen in every ex-
ecution, or never happen in any execution. Program invariants are
used in tasks such as verification, error-checking, and optimization,
among other applications. The problem faced by static analysis is
that, in general, computing exact invariants about programs is unde-
cidable, as shown by Rice’s Theorem [29]. Instead, a program anal-
ysis must approximate the set of true program invariants. Therefore,
an analysis designer must juggle soundness (any reported invariant
is actually an invariant); precision (the analysis computes a close
approximation to the set of real program invariants); and tractabil-
ity (the analysis computes its result using a reasonable amount of
resources).



1 x := 0;
2 y := input;
3 if (y<0) {x := x - 1;}
4 else {x := y + 1;}
5 print x;

(a) An example program that operates over in-
tegers. An invariant of this program is that, at
line 5, (x = −1) ∨ (x ≥ 1).
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x � [0,0]

x � [0,0]x � [0,0]

x � [-1,-1] x � (-∞,∞)

x � (-∞,∞)
y � (-∞,∞)

y � (-∞,∞)

y � (-∞,∞)

y � (-∞,∞)

y � (-∞,∞)

(b) A standard, interval-based analysis of the
example program cannot discover any useful
invariants about x.
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y � (-∞,∞)

y � (-∞,-1]

y � (-∞,∞)

y � [0, ∞)

y � (-∞,∞)

x � [-1, ∞)

(c) Refinement discovers the conservative in-
variant that, at line 5, x ≥ −1. The blue values
highlight the benefits of refinement.

Figure 6: An example program and an analysis over its control-flow graph. The analysis uses the interval abstract domain.

A major source of approximation is the method chosen by the
analysis designer to represent the set of possible program values.
Concretely, i.e., when the program executes, the set of possible
values may be infinite (for example, the set of all possible integers);
trying to exactly represent this set of concrete values makes the
analysis undecidable. The analysis designer must instead choose a
tractable set of abstract values with which to abstractly compute
the analysis; this set is called the abstract domain. Each value of
the abstract domain represents a specific set of concrete values.
For the set of integers, one possible abstract domain is {+,−, 0},
where + represents all positive integers, − represents all negative
integers, and 0 represents the single integer 0. This is a very course
approximation of integers. A more precise approximation would
be the interval abstract domain, where the interval value [a, b]
represents all the integers from a to b, inclusive. The least precise
interval value is (−∞,∞); the most precise interval value is [a, b]
where a = b.

The choice of abstract domain has a large part in determining
the precision of the static analysis. However, even for a given
abstract domain the analysis precision can vary based on a number
of factors. We illustrate these concepts and tradeoffs by way of
example. Figure 6a contains a program in a simple language. In this
language all program values are integers. An analysis designer may
choose to approximate these integers using intervals. The interval
abstract domain might be useful, e.g., as the basis for an analysis
that determines which JavaScript values can be safely represented
as a 32-bit integer instead of the default (and less efficient) 64-
bit floating-point representation [27]. We will first discuss a basic
version of the analysis that does not use refinement, and then show
how refinement can improve precision while still using the same
abstract domain of intervals.

A.1 Basic Analysis
A program’s control-flow is approximated as a graph, where the
nodes are program statements and there is an edge from s to s′ if
statement s′ can execute immediately after statement s. Figure 6b
contains the control-flow graph for our example program.

Given an abstract domain and an acyclic control-flow graph, the
analysis algorithm is fairly straightforward.4 If a node s has a single
predecessor s′, the algorithm abstractly interprets the statement s

4 The general algorithm, which operates over a possibly cyclic graph, is
more complex, but the complexity is not needed to understand refinement.

on its input, meaning that it performs the same operation as the
actual program execution would perform, except it does so on
abstract values instead of actual program values. Then it sends the
result along the successor edges of s. For example, the analysis
interprets the constant 0 in line 1 of the example program as the
abstract value [0, 0]. The analysis captures the fact that x is bound
to [0, 0] (denoted, x 7→ [0, 0]) and sends this information along the
edge to statement 2. The analysis interprets the expression input
in line 2 as (−∞,∞) because the user might input any integer. The
analysis then binds this value to y and sends the updated bindings
along the successor edges.

If a node has multiple successors, then that node represents
a branch. The analysis interprets the branch condition, to decide
which branch statement(s) to interpret next, i.e., the true or false
branch. Statically determining which branch statements will exe-
cute is undecidable, in general. Instead, the analysis conservatively
interprets any branch statement that may execute, under the abstract
interpretation of the branch condition. If the analysis has sufficient
information to determine that exactly one branch may execute, then
the choice is said to be deterministic. If the analysis cannot deter-
mine that exactly one branch may execute, then the choice is said
to be non-deterministic in the sense that the analysis executes both
branches.

In our example program, after line 2, y has the value (−∞,∞).
This interval covers both negative and non-negative values, so the
branch condition in line 3 leads to a non-deterministic choice. The
analysis conservatively over-approximates the program’s behavior
by copying the values along the edges that correspond to both
branches of the if statement. The analysis then interprets those
statements and passes the updated bindings along to their respective
successors.

If a node has multiple predecessors, then it represents a merge.
The analysis first merges all of the inputs from the predecessor
edges, then abstractly interprets the node with respect to the merged
inputs and sends the results along the node’s output(s). For the
domain of intervals, the merge of two intervals [amin , amax ] and
[bmin , bmax ] is [min(amin , bmin),max (amax , bmax )].

This analysis, conducted on our example program, concludes
that both x and y can have the value (−∞,∞) at line 5. This
imprecise conclusion fails to capture an invariant of the program:

We refer the interested reader to the full frameworks based on fixed point
approximation [12, 25].



x can never be less than −1. The imprecision results from the
fact that the analysis does not interpret the branch condition. The
condition is a message from the programmer: x’s value depends on
y’s only when y ≥ 0 . This observation is at the heart of refinement:
sometimes, it may be possible to interpret a branch condition and
to filter the values that flow to the branches.

A.2 Refinement
Refinement improves the precision of our example analysis. The
branch condition on line 3 is simple. It can be encoded as a filter
for the abstract values flowing through that condition: In the true
branch y’s abstract value must be such that the branch condition
would evaluate to true, and in the false branch y’s abstract value
must be such that the branch condition would evaluate to false.
In our example, this reasoning allows the analysis to determine
that y must have the abstract value (−∞,−1] in the true branch
and the abstract value [0,∞) in the false branch, as opposed to
having the abstract value (−∞,∞) in both branches as in the
basic analysis. This increase in precision eventually enables the
analysis to discover the invariant at line 5 that x ≥ −1. (This
information is still imprecise; it misses the invariant that x can
never be 0. However, this over-approximation is an artifact of
the abstract domain, which can encode only continuous ranges
of values. A more precise abstract domain would be required to
capture discontinuities.)
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