
Automated Customized Bug-Benchmark Generation
Vineeth Kashyap, Jason Ruchti, Lucja Kot, Emma Turetsky, Rebecca Swords,

Shih An Pan, Julien Henry, David Melski, and Eric Schulte
GrammaTech, Inc., Ithaca, NY 14850

{vkashyap,jruchti,lkot,turetsky,rswords,span,jhenry,melski,eschulte}@grammatech.com

Abstract—We introduce BUG-INJECTOR, a system that auto-
matically creates benchmarks for customized evaluation of static
analysis tools. We share a benchmark generated using BUG-
INJECTOR and illustrate its efficacy by using it to evaluate the
recall of two leading open-source static analysis tools: Clang
Static Analyzer and Infer.

BUG-INJECTOR works by inserting bugs based on bug tem-
plates into real-world host programs. It runs tests on the host
program to collect dynamic traces, searches the traces for a
point where the state satisfies the preconditions for some bug
template, then modifies the host program to “inject” a bug
based on that template. Injected bugs are used as test cases
in a static analysis tool evaluation benchmark. Every test case is
accompanied by a program input that exercises the injected bug.
We have identified a broad range of requirements and desiderata
for bug benchmarks; our approach generates on-demand test
benchmarks that meet these requirements. It also allows us to
create customized benchmarks suitable for evaluating tools for a
specific use case (e.g., a given codebase and set of bug types).

Our experimental evaluation demonstrates the suitability of
our generated benchmark for evaluating static bug-detection tools
and for comparing the performance of different tools.

Index Terms—Bug Benchmarks; Static Analysis Evaluation

I. INTRODUCTION

Several static analysis tools for finding bugs in programs
exist today. Researchers in academia and industry are constantly
working on creating new tools and sophisticated techniques
for static bug finding. However, evaluating static analysis tools
remains a challenge. A good evaluation system will guide
impactful improvement in bug-finding tools by identifying
their blind spots, furthering their adoption and effective use.

There are multiple aspects of static analysis tools that are
important to evaluate. In this paper, however, we mainly focus
on one key evaluation metric for static analysis tools: recall.
Virtually all static analysis tools used widely for bug detection
on C/C++ programs are unsound [1]. Measuring the recall
of a tool helps understand the degree to which it is unsound.
Answering “how well can a tool find all the bugs in a program”,
i.e., recall, in a convincing manner is difficult. It is hard—
if not impossible—to enumerate all bugs in any non-trivial
program. However, we can estimate the recall of a tool by
counting how many previously-known bugs in a given set of
programs are found by the tool. Such estimated recall rates
can be particularly useful for comparing different tools or tool
configurations. There is a large body of previous work [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17] on creating benchmarks containing known bugs. Despite
this significant progress, a recent study by Delaitre et al. [18]

found that there is still a shortage of test cases for evaluating
static analysis tools and thus a need for real-world software
with ground-truth information about known bugs.

To address this need, we first discuss some desirable
properties for a benchmark suite that contains known bugs
and is targeted towards evaluating static analysis tools.

Real-world-like. The benchmark’s programs should be repre-
sentative of real-world programs (e.g., in size and complexity).

Reliable ground truth. Each known bug in the benchmarks
should manifest on at least one execution of the program. If
they do not, any recall estimate based on the benchmarks is
not meaningful. Ideally, each known bug should come with a
proof-of-existence, such as an input that can trigger the bug.

Automated generation. To eliminate staleness, the tests in
the benchmark suite should be generated automatically: on
demand, without manual effort, in the quantity desired for
statistical significance.

Customizable. Users should be able to generate customized
benchmarks that are tailored to their codebases and bug
distribution expectations: one fixed benchmark does not suit all.
For example, Herter et al. [19] suggest that certain sectors (such
as the aerospace and automotive industries) deem recursive
function calls inappropriate. Similarly, not all bug classes are
equally important to all users of static analysis tools.

Broad coverage of bug types. Benchmarks should include a
broad variety of bugs: for example, bugs corresponding to a
large set of different Common Weakness Enumeration entries
(CWEs) [20]. Users can choose to customize their evaluation
by disregarding certain types of bugs.

Suitable for usefully evaluating and comparing the recall
of static analysis tools. Comparing the recall on the bench-
marks should discriminate between static analysis tools. The
benchmark tests should provide guidance to further improve
the recall of a given tool, e.g., by including bugs which are
within scope for the tool, but which the tool is unable to detect.

Implemented independently of evaluated techniques. To
avoid circularity, the techniques used to create the benchmark
suite should be independent of the techniques the benchmark
suite will be used to evaluate. Otherwise evaluations using the
benchmark suite will be biased by hiding shared limitations.

We address all of the above desired properties through BUG-
INJECTOR, a system that automatically generates benchmarks
containing known bugs. BUG-INJECTOR-generated benchmarks
have a broad range of applications, but the one we present in

1

this paper is particularly suited to estimating and comparing
the recall rates of static analysis tools, such as the open-source
tools Clang Static Analyzer and Infer.

BUG-INJECTOR starts from (i) a set of bug templates (§III-B)
that represent known bugs, (ii) a host program, i.e., an existing
real-world software application, and (iii) a set of tests to
exercise the host program. It searches dynamic traces of the host
program to identify injection points where the state satisfies a
bug template’s preconditions. Using dynamic state to identify
bug injection locations, rather than using information from
static analyses, provides independence from bias and from
the limitations of static analysis techniques (such as pointer
analysis imprecision or SMT solver weaknesses). For each of
the identified injection points (or a random subset thereof),
BUG-INJECTOR creates a new variant of the host program
by inserting a bug based on the bug template, integrating
with existing data and control flow. BUG-INJECTOR relies on
existing data and control flow complexity in the host programs
to generate realistic contexts for injected bugs. BUG-INJECTOR
outputs multiple versions of each host program, each containing
one injected bug and identifying a concrete program input that
will trigger the injected bug.

BUG-INJECTOR can inject bugs from a broad range of bug
classes into programs of various sizes, functionality types,
and complexity levels (§ V). This customizability allows for
additional uses of BUG-INJECTOR beyond tool evaluation. For
instance, a tool developer who creates analysis checkers for
a new kind of bug can use BUG-INJECTOR to generate test
cases containing bugs of that kind to quickly evaluate the
checker’s recall against real-world software (§ III-D). This
usage of BUG-INJECTOR can complement the typical method
of testing analysis checkers with small, hand-crafted tests.

The specific contributions of this paper are:
1) The BUG-INJECTOR system, a novel technique to auto-

matically generate customized, realistic benchmarks with
known bugs that can be triggered using accompanying
inputs. We describe BUG-INJECTOR’s architecture, func-
tionality, and underlying algorithms in § III. As far as
we know, BUG-INJECTOR is the only existing system
(Table I) capable of producing benchmarks that meets all
desired properties discussed above.

2) Openly-available benchmark suites (§V) generated using
BUG-INJECTOR. We have created bug templates (both
manually and automatically) from different sources cor-
responding to a wide variety of CWE [20] entries and
injected them into open-source real-world programs.

3) An extensive evaluation of two leading open-source static
analysis tools for C/C++ programs—Clang Static Analyzer
(CSA) [21] and Infer [22]—on our generated benchmarks.
Our results (§VI), show that: (a) both of these tools fail to
detect bugs that are seemingly in scope for them, (b) our
benchmarks can be used to compare the recall of the two
tools, and (c) our benchmarks can contrast two analysis
configurations of CSA, showing that BUG-INJECTOR
can be used to automatically tune analysis configurations
customized to a codebase. We also filed bug reports for

CSA and Infer on certain missed warnings. Additionally,
we show that a closely related work, LAVA [23], is not
suitable for comparing static analysis tools.

In the remainder of the paper, we compare to related work
(§II), describe challenges in estimating tool recall (§IV), discuss
limitations and future work (§VII), and conclude (§VIII).

II. RELATED WORK

Creating bug-containing benchmarks for testing and evaluat-
ing bug-finding tools has attracted significant research attention
in recent years. In this section, we compare BUG-INJECTOR
to the closest related work, summarized in Table I.

TABLE I: Summary comparing BUG-INJECTOR (BI) with other
closely related work across the different properties outlined
in I. Columns: EC=EvilCoder, Synth=Synthetic benchmarks,
Wild=wild caught bugs. Values: Ltd.=Limited, Yes*=subject
to some errors.

Property BI LAVA EC Synth Wild

Real-world-like Yes Yes Yes No Yes
Reliable ground truth Yes Yes No Yes* Ltd.
Automated, not fixed Yes Yes Yes No No
Customizable Yes Yes Yes No No
Wide coverage of CWEs Yes No No Yes No
Evaluate static tools? Yes No No Ltd. Ltd.
Independent? Yes Ltd. No Yes Yes

Synthetic benchmarks. Several efforts have targeted manual
creation of artificial test programs containing bugs. Some promi-
nent examples are: Juliet tests [2], the IARPA STONESOUP
snippets [3], Toyota ITC benchmarks [4], OWASP WebGoat [5],
Wilander et al., [6], [7], and ABM [8]. However, synthetic
benchmarks have limited applicability in identifying how tools
perform on real-world code.

Wild. Bugs may be mined and curated from real-world
software. Some prominent examples of such curated bug
collections are: BugZoo [9], BugSwarm [24], ManyBugs [25],
Defects4J [26], [27], BugBench [10], BugBox [11], Se-
curiBench [12], and Zitser et al., [13]. While they have the
advantage of being real-world-like, they have varying degrees of
ground truth, and not all of them come with proof-of-existence.
There is also very little benchmark-user customizability with
respect to bug type coverage and distribution.

The curation of both wild and synthetic benchmarks requires
substantial manual effort and is prone to errors (e.g., both the
Juliet test cases and the Toyota ITC benchmarks have required
corrections [2], [19]). They are fixed and not customizable,
with pre-determined target code constructs and bug types.
They therefore have limited applicability for evaluating and
comparing the recall of static analysis tools. SARD [14] is
perhaps the largest openly available collection of known buggy
test programs, put together by the SAMATE group at NIST. It
contains both synthetic and wild benchmarks.

EvilCoder. This system [15] uses static analysis to find
sensitive sinks in a host program and connects them to a
user-controlled source to inject taint-based bugs. A significant

2

disadvantage is that there is no guarantee that inserted bugs
are true positives—which makes it unsuitable for estimating
recall. Indeed, the paper does not evaluate bug-finding tools
on EvilCoder test cases. EvilCoder injected bugs inherit the
limitations of the static analysis tools used as a part of the
injection pipeline, and therefore may bias evaluation of other
static analysis tools. EvilCoder is limited to taint-based bugs.

LAVA. This system [16], [23] inserts bugs into host programs
by identifying situations where user-controlled input can trigger
an out-of-bounds read or write. LAVA bugs come with an input
to trigger the bug and are validated to check that they return exit
codes associated with buffer overflows. However, this approach
is limited to inserting buffer overruns, and other kinds of bugs
are left as future work. More recently [28], LAVA has been
extended to a small number of additional bug types. LAVA
test cases are generated to satisfy an additional goal: the bugs
must manifest only on a small fraction of all possible inputs.
This requirement seems targeted towards testing fuzzing tools;
we do not think it is necessarily applicable in the context
of testing static analysis tools.1 To satisfy the requirement,
LAVA injects bugs with certain patterns (the “knob and trigger”
pattern which relies on magic values). It is unclear how realistic
this bug pattern is with respect to bugs found in production
software. A more detailed discussion of the suitability of LAVA
benchmarks for static analysis evaluation is provided in §VI-E.
Another closely related technique is Apocalypse [17], which
is similarly targeted towards creating challenging benchmarks
for fuzzing and concolic execution tools.

As opposed to the synthetic and wild benchmarks, EvilCoder,
LAVA, and BUG-INJECTOR are automated and can create large
number of bugs in custom real-world programs.

BUG-INJECTOR uses bug templates and a host program to
produce a suite of programs containing one known bug apiece,
along with an input that can trigger each bug. The available
bug templates cover a large number of CWEs, and new bug
templates are easy to create. Through empirical evaluation
(§ VI), we show that BUG-INJECTOR generated benchmarks
are suitable for evaluating and comparing the estimated recall
of static analysis tools.

Other related techniques are mutation testing [30], [31] and
fault injection [32], [33], [34]. Mutation testing is used to
evaluate the quality of a test suite, and is different from
our work because the mutations are much simpler, are not
dynamically targeted, and are not guaranteed to introduce real
bugs. Compared to our work, fault injection techniques serve
a different purpose: they aim to evaluate the robustness of
software in the presence of various kinds of faults, e.g., data
corruption, errors returned by library functions. Typically, these
techniques inject or emulate faults in software at runtime, and
then compare the dynamic behavior of software during normal
and fault-induced runs. Faults injected by these techniques are
fairly simple [32], and in contrast to BUG-INJECTOR, faults
are not integrated with the host program.

1Many famous bugs, e.g. HeartBleed [29], execute on the majority of
possible inputs.

III. BUG INJECTOR

In this section, we describe the tooling used for BUG-
INJECTOR, introduce bug templates, and describe how BUG-
INJECTOR works. We illustrate the injection of a bug template
into a host program, and discuss potential applications.

A. Tooling

BUG-INJECTOR is implemented using the Software Evo-
lution Library (SEL) [35], an open-source toolchain that
provides a uniform interface for instrumenting, tracing, and
modifying software. SEL supports multiple programming
languages. Currently, BUG-INJECTOR works on C/C++, Java,
and JavaScript2 software. In this paper, we focus on BUG-
INJECTOR as applied to C/C++ software. C/C++ software
modifications are implemented via Clang’s libtooling API.
Clang’s libtooling provides a solid foundation for parsing
and program modification in the presence of the latest C/C++
syntactic features, making BUG-INJECTOR applicable to a wide
range of C/C++ software.

B. Bug templates

BUG-INJECTOR is able to inject a wide range of bug types,
based on the provided bug templates. A bug template is
defined in Common Lisp, and it specifies: (a) the dynamic and
static requirements for a successful bug injection, (b) the code
snippets constituting the bug itself, and (c) how these code
snippets should be integrated into the program. A bug template
consists of one or more patches.3 An example bug template
consisting of a single patch is provided in Figure 1b. Each
patch has the following fields.

code. The buggy code that will be inserted into the host
program. In Figure 1b, the buggy code is a call to memcpy.
The buggy code can contain references to free variables.

free-variables. A list of type-qualified free variables
in the buggy code. These are matched to type-compatible in-
scope variables at the injection location in the host program.
Occurrences of the free variables in code are replaced with the
matched host program variables before injection. In Figure 1b,
the free variable listing implies that $dst and $src should
be bound to host program variables with type char*.

precondition. Any boolean predicate constructed using
the following primitives defined over the in-scope variables
($v) at a program point (p) in the dynamic trace:

• value($v, p): the value of $v at p
• size($v, p): the dynamically allocated size of memory

pointed to by $v at p
• ast(p): the abstract syntax tree at p
• name($v): the name of $v
• type($v): the static type of $v

The primitives value and size allow matching on dynamic
conditions, whereas ast, name, and type allow matching
on static conditions. BUG-INJECTOR uses the precondition

2Java and JavaScript support is experimental, under heavy development.
3A successful bug injection applies all the patches in a bug template.

3

1 void f1(char *src) {
2 char *dst = 0; // ’dst’ initialized to a null ptr
3 memcpy(dst + 0, src, 10); // expected warning: null
4 // ptr argument in call to memory copy function
5 }

(a) Clang Static Analyzer (CSA) regression test, annotated with
expected tool behavior. This test program contains a bug: the first
argument to the memory copy function is null.

code memcpy($dst + 0, $src, $num);

free-variables $dst: pointer to char
$src: pointer to char
$num: integer

precondition value($dst, p) = 0 ∧ value($num, p) > 1

(b) A bug template containing a single patch corresponding to the
bug in Figure 1a. For presentation, the patch has been abstracted from
its Common Lisp definition.

1 /* global variable declarations */
2 static char *lastout;
3 static char *prog;
4 static int out_byte;
5 /* ... lots of code, some interact with globals */
6 static int grep(int fd) {
7 /* ... more code */
8 + /* from input (./harness.sh test BIN 1) */
9 + /* POTENTIAL FLAW */

10 + memcpy(lastout + 0, prog, out_byte);
11 reset(fd);
12 lastout=0;

(c) The diff resulting from injecting the bug template in 1b into grep.
Here, $dst → lastout, $src → prog, $num → out_byte.

Fig. 1: A CSA regression test (1a), a corresponding bug
template (1b) created manually, and the diff resulting from
injection of this bug template into the grep program (1c).

predicate to search the dynamic traces for suitable injection
locations: points in the trace that meet the precondition. The
input that gives rise to a trace is called the “witness” of
that trace. The buggy code injected into the source at the
precondition-matching location will be executed when run with
the witness input. In Figure 1b, the precondition specifies that
at an injection point p, (a) an in-scope variable bound to $dst
is a null pointer, and (b) another in-scope variable bound to
$num has a value > 1.

The example bug template in Figure 1b was manually created
based on an existing regression test (Figure 1a) for CSA. This
regression test contains a bug at the call to memcpy: that its
first argument is a null pointer. A successful injection of the
bug template in Figure 1b will insert a call to memcpy, where
(a) $src, $dst, and $num are replaced with host program
variables, and (b) the variable bound to $dst is null and the
variable bound to $num is > 1, before the call to memcpy.
Thus, the bug injection attempts to create the same kind of bug,
but embedded and integrated with the host program’s data and
control flow complexity. The null value of the host program
variable bound to $dst comes from an existing sequence of
host program events (i.e., it is not artificially generated): e.g.,
the pointer might have been set to null at a distant program

point in a different function, or its value copied from some
other pointer which happens to be null under certain conditions
triggered by the witness input.

Typically, creating a bug template from an example bug
requires identifying (a) the relevant buggy code, (b) the free
variables in the buggy code that must be re-bound in the host
program, and (c) preconditions to ensure the bug is successfully
transferred to the host program.

C. Technique

Host
Program Instrument Execute Inject & Validate

Buggy
Programs

+
Witnesses

Bug TemplatesProgram Inputs

Trace

Points

Fig. 2: BUG-INJECTOR pipeline.

The BUG-INJECTOR pipeline of instrument, execute, and
inject is shown in Figure 2 and described in the algorithm
in Figure 3. BUG-INJECTOR takes three inputs: (1) a host
program, (2) a set of tests for this program, and (3) a set of
bug templates. It attempts to inject bugs from the set of bug
templates into the host program, and returns multiple different
buggy versions of the host program. Each returned buggy
program variant has at least one known bug (the one that was
injected), and is associated with a witness—a test input which
is known to exercise the injected bug.

The BUG-INJECTOR algorithm begins by instrumenting
the host program (Figure 3, line 2). The Instrument method
rewrites the source code of the host program, inserting code
to emit dynamic trace output. Traces include the values of
all in-scope variables (currently limited to primitive types
and pointers) at every program statement. The algorithm then
runs the instrumented program with test inputs. The collected

Input: Host Program, Host : Program
Input: Program Inputs, Suite: {Test}
Input: Bug Templates, Templates: {BugTemplate}
Parameters: NumInjections , MaxTrace
Output: Buggy Program Versions, Bench: {〈Program,Test〉}

1: let Bench ← ∅, TraceDB ← ∅
2: let Inst ← Instrument(Host) . Instrument
3: for Input ∈ Suite do . Execute
4: TraceDB ← TraceDB ∪ Collect(Inst , Input ,MaxTrace)
5: end for
6: for Template ∈ Templates do
7: Candidates ← Match(Template.precondition, TraceDB)
8: Sampled ← RandomSample(Candidates,NumInjections)
9: for 〈Points,Witness〉 ∈ Sampled do

10: Bugged ← Inject(Host , Points, Template) . Inject
11: if Validate(Bugged , Witness) then . Validate
12: Bench ← Bench ∪ {(Bugged , Witness)}
13: end if
14: end for
15: end for
16: return Bench

Fig. 3: BUG-INJECTOR algorithm.

4

traces (capped by size MaxTrace) and the test inputs that
produced them are stored efficiently in a persistent binary-
format database, TraceDB (line 4).

BUG-INJECTOR then attempts to inject each of the bug
templates NumInjection times. For every bug template, it uses
Match to search TraceDB for candidate program point sets
that correspondingly match the preconditions for all the patches
in that bug template. Match returns a list of candidates: each
candidate is a tuple of points—one program point per patch
in the bug template—and a witness input. BUG-INJECTOR
randomly samples NumInjection candidates for injection. The
candidates picked for injection are then used by Inject (line 10),
which takes the code in the patches of the bug template and
rewrites the source code locations associated with each of
the Points. Source rewriting involves inserting the associated
code snippet into the host program, then renaming all the
free variable names with the precondition-matching and type-
compatible in-scope variables of the host program.

To validate an injection, BUG-INJECTOR adds instrumenta-
tion4 to the modified program to dynamically check that the
pre-conditions hold before the injected bug upon re-execution
against Witness (line 11). The buggy program Bugged and its
associated Witness are added to the output Bench (line 12).
After exhausting the given number of injections, or when
no more candidate injection points are available, Bench is
returned.

As an example, consider the injection of bug template
given in Figure 1b into the C program grep, resulting in the
buggy variant of grep shown in Figure 1c. In this instance,
BUG-INJECTOR uses host program’s global static variables,
lastout, prog, and out_byte, in the call to memcpy.
For diagnostic purposes, the injected buggy code is optionally
preceded by a comment that includes the input witness for the
injected bug. When buggy grep is run with this input, the value
of lastout is null before the call to memcpy, at least once
during program execution. This injection successfully violates
the “memcpy should not be called with its first argument being
a null pointer” rule, but in a different code context.

CSA emits a warning about the bug in their regression
test Figure 1a. However, CSA fails to report a warning for the
similar injected bug in this buggy version of grep. CSA has
“lost” this bug due to its injection into a more complex context.

D. Uses of BUG-INJECTOR

One of the applications of BUG-INJECTOR is to provide
feedback to static analysis tool developers regarding the false-
negative rates of their “checkers” on real-world programs. A
typical workflow for building static analysis checkers5 is an
iterative process: (1) develop a checker to detect violations
of a program property, (2) test the static analysis checker on
some manually crafted test programs, (3) deploy the checker
into production, (4) identify failures and false-negative corner

4The validation code is removed before adding it to the benchmark.
5This workflow is informed by the author’s discussions with static analysis

tool developers and by the static analysis checker development tutorial for
Phasar [36].

cases for the checker, (5) iterate and improve the checker. BUG-
INJECTOR can improve and accelerate this process. Instead of
manually crafting test cases, we can craft relevant bug templates.
BUG-INJECTOR can then generate checker benchmarks by
injecting these bug templates into real-world programs. The
static analysis checker can then be tested on the generated
benchmarks to obtain early feedback regarding the checker’s
performance (such as expected false-negative rate, scalability),
before deploying the checker into production.

Another application of BUG-INJECTOR is customized evalu-
ation of static analysis tools, as we have done in §VI. We also
provided the SAMATE group at NIST with BUG-INJECTOR.
This group is conducting SATE VI [37]: the sixth iteration of
Static Analysis Tool Exposition. SATE is a non-competitive
study of static analysis tool effectiveness, aiming at improving
tools and increasing public awareness and adoption. SATE VI is
already making use of BUG-INJECTOR generated test programs,
in addition to manually crafted test programs. Further, NIST
is expecting to make extensive use of BUG-INJECTOR for
SATE VII, the next iteration of SATE. To quote the initial
experience of the NIST team with BUG-INJECTOR: “using
BUG-INJECTOR to generate benchmarks is much faster (at least
five times as fast) than using our current manual benchmark
generation process.” For SATE VI, the participating static
analysis vendors can compare how well they perform on BUG-
INJECTOR generated benchmarks vs. the manually created
benchmarks, which will be a useful broader study regarding
the effectiveness of BUG-INJECTOR. NIST also plans to add
BUG-INJECTOR generated tests to the SARD dataset [14].

IV. ESTIMATING STATIC ANALYSIS RECALL

As previously discussed in § I, it is difficult to compute the
exact recall of a tool. Thus, BUG-INJECTOR (as well as all
other related work) estimates the recall of a static analysis tool
using the set of known bugs in a given benchmark, which is
a subset (possibly strict) of all the bugs actually present in
that benchmark. The set of known bugs in a given benchmark
is referred to as the ground truth for the benchmark. In this
section, we discuss some practical issues in representing ground
truth for the purposes of evaluating static analysis tools.

Ground truth accuracy. That is, each bug in the provided
list must manifest in at least one execution of the program.
LAVA [16] provides backtraces for each test case showing that
the bugs included are real. EvilCoder [15], however, provides no
such guarantees. BUG-INJECTOR benchmarks come with inputs
which can generate dynamically-observed program states where
the bug template preconditions are met. Hence, the guarantees
provided by BUG-INJECTOR are relative to the correctness of
the bug template specification.

Matching ground truth to tool output. Ground truth must
include information such as location and bug type for each listed
bug. This information allows automated or semi-automated
matching of a tool’s output with the ground truth. There are
various pitfalls in providing this information: there may be
multiple locations associated with a bug, multiple bug types

5

associated with the same bug, multiple bugs in the same
location (depending on the granularity of the location), or
lexically distinct languages used by tools to warn about the
same bug type. Several recent studies [19], [18] elaborate on
these problems.
Real-world bug distribution. BUG-INJECTOR gives us
control over how many of each type of bug we inject. By
injecting bugs of a type that are harder or easier for a given
tool to detect, one can influence the measured recall of the
tool on the generated benchmark. Unfortunately, it is difficult
to know the real-world distribution of different bug types. This
does not prevent the use of BUG-INJECTOR for comparing the
relative recall of two tools on particular bug types of interest
or between different settings of the same tool.

LAVA [16] injects only buffer overflows, so the bug type
is known up front. Every test case includes a backtrace that
showcases the bug. While this may be sufficient for evaluating
fuzzers or manually inspecting static analysis results, it can be
difficult to automate. For example, do you credit a tool with
finding a bug only if it warns about the location at the top of the
backtrace, or is it sufficient for it to warn about any location in
the backtrace? Are there other relevant locations in the program
that can be justifiably reported by static analysis tools? For the
LAVA-1 dataset, we found empirically that key locations in
the backtraces can be matched to invocations of the synthetic
method lava_get() in the source code. Consequently, we
interpret the ground truth to be the set of these locations.

For our BUG-INJECTOR benchmark, such additional ground
truth information is implicit in the bug templates (which
specify the bug type) and the locations where the injection
was performed. As shown in the example in Figure 1, the
injection location can be determined by examining the source
code difference between the original and injected program.

A further hurdle to automation is that there is no standardized
format for the output of a static analysis tool that all tools
adhere to, and often no direct way to determine which specific
bug a tool is reporting. In practice, the evaluator must typically
rely on manually created heuristics that match the tool’s
reports with ground truth based on location and warning type.
This approach has some limitations, notably the possibility
of mistakenly failing to credit the tool with a true positive
because it reports a slightly different but related bug, or because
it reports the correct bug at a slightly different location. Adding
some “tolerances” to the location heuristics, such as allowing
a neighborhood of several lines of code around the expected
bug location, can mitigate this problem but may cause its own
issues if the tool detects unrelated bugs in the neighborhood. In
our experimental evaluation § VI-B, we explicitly discuss how
we credit tools for finding appropriate bugs in our benchmarks.

V. OUR BENCHMARK SUITES

In this section, we describe two BUG-INJECTOR-generated
benchmark suites. Both these benchmark suites, and the bug
templates used to generate them, are available online for use
by the community [38]. We plan to maintain a library of bug
templates that can be used for different user-chosen evaluations.

A. Selection of host programs

TABLE II: Host programs used for evaluation. LOC gives the
lines of code in the programs. The rest of the columns are
described in §V-C.

Project Version LOC Prep
Time

Query
Time

Sites/
KLOC

grep [39] 2.0 12K 66 1.76 372.76
nginx [40] 1.13.0 178K 766 5.03 7.62

We use the open-source projects listed in Table II as the
host programs for generating our benchmark suites. We have
successfully injected bugs into other C/C++ host programs
(total of 15 real-world programs to date), but we have not
included them in this paper due to resource constraints in
running experiments (§ VI). One such excluded program is
WireShark version 1.12.9, which has 2.3 million lines of code:
it is the largest program we have successfully injected bugs into.
This demonstrates BUG-INJECTOR’s ability to inject into a
variety of real-world projects. An important criteria for picking
host programs is the availability of test suites with good code
coverage: they provide a large number of distinct trace points
for BUG-INJECTOR, improving the chances of finding many
suitable injection points by matching preconditions.

B. Selection of bug templates

Bug Template
Source

No. of
Templates

mean counts

LOC FVars CF Stmts

CSA [41] 10 3.1 0.8 0.2
Infer [42], [43] 6 4.2 0.8 0.8
Juliet tests [2] 55 7.8 1.3 0.9

TABLE III: The number of bug templates from each source.
The last three columns provide the means over each set of
templates for: (a) the number of lines of code to be injected, (b)
the number of free variables to be rebound, and (c) the number
of control-flow statements in the injected code, respectively.

We create bug templates from three sources (shown in
Table III) to satisfy two different goals. First, we want our
benchmark suite to allow a fair evaluation of CSA [21] and
Infer [22], and inject bug types that these tools care about and
are expected to find. Both tools support the detection of buffer
overflows (BO) and null pointer dereferences (NPD). Therefore,
we collect examples of BO and NPD bugs that appear in these
tool’s documentation [41], [42] and regression test suites [43].
We manually verified that each example contains the bug they
claim to contain, and then converted the example to a bug
template. We also checked that at least one tool warns on
each example bug snippet. The manual conversion of a bug
example to a bug template is fairly straightforward (described
in § III-B), and only took on the order of few minutes per
example. Each of the 16 bug templates collected from CSA

6

and Infer are injected upto 30 times into each of the two host
programs in Table II, to create benchmark suite B1, with a total
of 591 program variants. Note that a bug template may have
been injected fewer than 30 times into a host program because
of insufficient number of precondition-matching locations or
failed validation. In B1, each of the 16 bug templates has been
injected at least once. B1 is used for answering the research
questions (§VI-A) RQ1, RQ2, and RQ3.

Second, we want to demonstrate that BUG-INJECTOR can
inject a wide variety of bug types and CWE categories [20].
To this end, we automatically converted 55 bug examples
from the Juliet test suite (version 1.3. [2]) into bug templates;
these bug examples span 55 unique CWE types, from stack-
based buffer overflows (CWE-121) to type confusion (CWE-
843). We exploited the uniform structure of Juliet tests to
automatically create these bug templates: we extract free
variables, preconditions, and code to inject from the Juliet
test suite using both static and dynamic information from
each bug example. We created the benchmark suite B2, which
contains 2,492 program variants, by injecting each of the 55
bug templates sourced from Juliet tests upto 30 times into each
of the host programs. Each of the 55 bug templates has been
injected at least once. Many bug types in Juliet tests are out of
scope for CSA and Infer, therefore we do not evaluate these
tools on B2 in this paper. B2 serves to answer RQ4.

The program variants with bugs are uniformly formatted
using a code beautification tool, ensuring the injection does
not stand out due to code-style differences. As shown in
Table III, the bug templates typically include a small amount
of code. These characteristics, along with the use of existing
program variables (through free variable rebinding), allow the
injections to meld with the existing code and look realistic (e.g.,
see Figure 1c, or examine any of the benchmark programs).

C. Performance of BUG-INJECTOR

As discussed in §III, BUG-INJECTOR operates in a pipeline
of several stages. Performance in these stages depends on
characteristics of the host program, its tests, and the bug
template set. Table II summarizes the key characteristics and
performance data for the host programs. Timing experiments
were performed on an Intel(R) Xeon(R) 2.10 GHz machine
with 72 cores and 128 GB of RAM.

In the instrument and execute stages, BUG-INJECTOR parses
the host program, adds instrumentation, and runs the program
with test inputs to collect traces. The time required for this stage
depends on the size of the program, the number of variables it
contains, and the number of input tests to run; the “Prep Time”
column in Table II, given in seconds, provides this information
for each host program. This provided prep time is a one time
cost, which gets amortized over the number of bugs to be
injected into the same host program.

The inject stage involves searching the trace database for
points satisfying the bug template preconditions. The time
required per injection depends on the number of points
collected in the trace, the percentage of points which satisfy
the precondition and free variable requirements, as well as the

complexity of the precondition. The “Query Time” column
gives the median time (in seconds) per query. The “Sites/KLOC”
column in Table II provides the number of matching host-
program sites that are suited for injection based on our bug
templates, per 1000 lines of code. The grep program contained
a large number of string and integer variables, and therefore
showed higher density of potential injection sites; conversely,
nginx, with few integer variables, had lower density of
injection sites.

Lastly, BUG-INJECTOR edits the program, applies code
formatting to the buggy software, and writes it out to disk. The
time required to apply code formatting and printing the buggy
program is directly proportional to the program size. Overall,
the prep time dominates the pipeline as the most expensive
stage. Given the offline and automatic nature of benchmark
creation, we believe the performance of BUG-INJECTOR is
reasonable.

VI. EVALUATION

In this section, we outline the research questions that direct
our evaluation, describe our experimental methodology, report
and discuss the results of our experiments, and compare our
benchmark with the LAVA test cases [23].

A. Research questions

The goal of our evaluation is to answer the following research
questions about BUG-INJECTOR and its generated benchmarks.
RQ1: Do the benchmarks contain bugs which are seemingly

in scope for the tool but which the tool fails to detect?
Such bugs could provide useful concrete feedback to the
tool’s developers.

RQ2: Can the benchmarks discriminate between different
static analysis tools?

RQ3: Can the benchmarks discriminate between different
parameter settings for a given static analysis tool? Such an
ability suggests the use of BUG-INJECTOR for automated
tuning of a tool’s parameters specific to a given codebase.

RQ4: Can BUG-INJECTOR create benchmarks that include
bugs from multiple CWEs? Such an ability shows whether
the technique is applicable to multiple bug types.

In addition to answering the above research questions, we
also compare BUG-INJECTOR with the LAVA test suite with
respect to the same research themes.

B. Experimental setup and methodology

Static analysis tools and configurations. We perform
our experiments using two open-source state-of-the-art static
analysis tools for C/C++ programs: Clang Static Analyzer
(CSA) [21] and Infer [22]. We use CSA version 3.86, and
run the tool on Ubuntu 16.04. We use CSA with the analyzer
configuration mode set to “shallow” (CSA-S), as well as the
default mode “deep” (CSA-D). CSA-S mode changes certain
default analysis parameters, such as the style of the inter-
procedural analysis and maximum inlinable size. We use the

6This is the default version available on Ubuntu 16.04.

7

term CSA to refer to both modes. CSA is run with all the default
checkers enabled, along with the optional alpha, security,
osx, llvm, nullability, and optin checkers.

We use Infer version 0.14, and run it from the tool’s
official Docker image. Infer is run with default options and
compute-analytics, biabduction, quandary, and
bufferoverrun enabled. For both CSA and Infer, our
intention is to enable as many checkers as possible to maximize
the tool’s chance of finding the injected bugs.
Projected recall. This metric computes the percentage of the
BUG-INJECTOR injected bugs found by a tool. We report this
value by rounding to a whole number percentage. To determine
whether a tool found an injected bug successfully, as discussed
in § IV, we consider the locations of the bug injection as the
bug locations. We credit a tool with finding an injected bug
if it reports a bug of an appropriate type on at least one of
the injected code lines. The table below summarizes which
tool-specific bug types (cell contents) reported by the tools
(row headers) are considered to correspond to the injected bug
types (column headers). We interpret the bug types reported
by the tools quite generously, to maximize their chances of
being credited with finding the injected bugs.

Buffer overrun (BO) Null pointer dereference (NPD)

CSA Out of bound array access,
Result of operation is garbage
or undefined, malloc()
size overflow

Dereference of null pointer, Unini-
tialized argument value, Argu-
ment with ‘nonull’ attribute
passed null

Infer Array out of bounds, Buffer
overrun, Memory leak, Stack
variable address escape

Array out of bounds, Buffer over-
run, Dangling pointer dereference,
Null dereference, Memory leak

C. Experiments and results

To help answer research questions RQ1, RQ2, and RQ3, we
run CSA-S, CSA-D, and Infer, on benchmark B1 (described
in § V). Tables IV and V provide the projected recall of the
tools on various partitionings of B1.

The two tables provide different views of the same experi-
mental results. Table IV partitions the results by bug template
source (Table III) and host program (Table II). The last row
provides results on the entire B1 benchmark. Table V partitions
the results by injected bug type (NPD or BO) and host program.
The “No. of Bugs” column in both these tables describes the
number of benchmark programs–each containing one known
bug—in the specified partition. The rightmost six rows in both
the tables provide the projected recall of the tools on the given
benchmark partition. The highest projected recall in each row
is highlighted.

A tool can obtain higher projected recall by simply reporting
more warnings overall, which will increase its chances of also
reporting an injected bug. A tool could also take a lot longer
than is acceptable to a user to report bugs. Therefore, it is
instructive to look at two additional metrics: “Warnings per
KLOC” and “Time taken”. Table VI reports these metrics.

The columns under “Warnings per KLOC” in Table VI
provide the average number of total warnings reported by the

TABLE IV: Projected recall of different tools for various
pairs of bug template sources and host programs. Last row
summarizes the results over the entire benchmark suite B1.

Bug
Template
Source

Host
Program

No. of
Bugs CSA-S CSA-D Infer

CSA grep 251 88% 69% 45%
nginx 122 92% 92% 52%

Infer grep 179 36% 37% 50%
nginx 39 69% 69% 18%

Both Both 591 72% 64% 46%

TABLE V: Projected recall of different tools for various pairs
of bug types and host programs.

Bug
Type

Host
Program

No. of
Bugs CSA-S CSA-D Infer

NPD grep 98 82% 67% 15%
nginx 60 90% 90% 20%

BO grep 332 61% 53% 57%
nginx 101 84% 84% 58%

tools for every thousand lines of code, on the benchmark suite
B1. The number provided after the ± symbol is the standard
deviation (rounded to one decimal place) over all variants
of that host program. This metric can be helpful to check
that a tool is not reporting so many warnings on real-world
programs that it is effectively unusable. Note that comparing
this metric directly between two analysis tools which do not
have comparable warning classes (such as Infer vs. CSA) is not
particularly meaningful. On “grep”, CSA-D reports more total
warnings than CSA-S, whereas, on “nginx”, CSA-S reports
more total warnings than CSA-D.

The columns under “Time taken” in Table VI provide the
average time taken by the tool to run on a given host program.
We run each tool five times on a four-core Intel(R) Xeon(R)
2.10Ghz machine with 16GB RAM and report the average.
CSA-S runs much faster than CSA-D.

Addressing RQ1. The benchmark suite B1 consists of the
bugs that CSA and Infer care about injected into popular
open-source programs (representing the expected targets of the
chosen static analysis tools). Tables IV andV show that both
the tools detect some but not all of the injected bugs.

If a tool reports a bug on a small example with a simple
context, we might expect that the tool also reports a similar

TABLE VI: Total warnings reported per KLOC and average
time taken by the tools.

Host Warnings per KLOC Time taken (seconds)
CSA-S CSA-D Infer CSA-S CSA-D Infer

grep 7.9±.2 9.7±.2 1.9±.1 14.7 41.1 20.5
nginx 6.8±.0 2.8±.0 0.8±.1 229.6 366.1 338.7

8

bug in a more complex setting. However, in the case of both
CSA and Infer—the leading open-source static analysis tools
for C/C++—we find that they “lose” bugs (projected recall is
not 100%) across all rows in Tables IV andV. That is, CSA
and Infer find bugs in their respective documentation examples
and regression tests, but in many cases they lose the ability
to find the “same” bug when it is injected and integrated into
a larger program. These “lost” bugs can represent concrete
feedback for the analysis tool developers.

Addressing RQ2. Tables IV andV show that our generated
benchmarks can be used for contrasting the projected recall
of the evaluated tools. Depending on the specific subset of
the benchmark suite (i.e., table row) that is of interest to the
evaluator, different tools have higher projected recall. Thus,
BUG-INJECTOR can be used to perform tool evaluations to
suit specific customer needs by providing control over the
distribution of bug templates and host programs. CSA-S has
the highest recall on benchmark suite B1 as a whole.

Addressing RQ3. Static analysis tools are typically config-
urable, with the chosen configuration affecting tool recall,
precision, and scalability. There is generally no single best
configuration: it depends on several factors including the
codebase being analyzed, the warning classes that are of interest,
etc. To evaluate how our generated benchmarks discriminate
different configurations of the same tool, we examine two
configurations of Clang Static Analyzer: CSA-D and CSA-S. In
a majority of cases in B1, CSA-S has equal or higher projected
recall compared to CSA-D, while also being significantly faster.
This is a surprising result that may be of interest to CSA users
and developers.

In this paper, we only compare two configuration points
of CSA. However, CSA (and many other analysis tools) have
several configuration parameters. Projected recall from BUG-
INJECTOR generated tests can be used (in conjuction with other
metrics of interest) to tune the settings of these parameters for
a given codebase.

Addressing RQ4. BUG-INJECTOR is able to generate the
benchmark B2, which contains injected bugs corresponding to
55 different CWEs, based on bug templates sourced from Juliet
test suite version 1.3. This artifact shows that BUG-INJECTOR
can be used to inject a wide-variety of bug types.

D. Causes of lost bugs

A large number of injected bugs are “lost” by the evaluated
tools (ranging between 28% to 54% lost bugs per tool). An
extensive study of all lost bug cases by each tool is out of
scope for this work. Instead, we sampled a small number
of randomly-selected lost bugs to manually check whether
there were particular patterns or language constructs that were
causing the tools to lose track of the bugs. However, we found
no single dominant pattern for the lost bugs: there seems to
be a long tail of several issues that cause tools to lose bugs.
In our limited study, we see that each lost bug belongs to one
of three categories:
needs-fix: the tool needs to be fixed for the bug to be found

param: adjusting the tool’s parameters can find the bug
expected: the bug is lost by design

Below, we discuss some simplified examples of lost bugs
in B1. We mark each discussed bug with our diagnosis with
respect to the above categories. We have reported [44], [45],
[46] some of these lost bugs to the analysis developers.

Infer fails to report [45] any warnings in a function that has
enum declarations of the following form (needs-fix):

1 enum { L, R } dirs[12];

Infer fails to report [44] the null pointer dereference in this
simple case (needs-fix or param):

1 int *nullable; int *firstpos; int *lastpos;
2 int * buf = 0;
3 nullable = malloc(2*sizeof(int));
4 firstpos = malloc(2*sizeof(int));
5 lastpos = malloc(2*sizeof(int));
6 for (int i = 0; i < 3; i++) { /* no-op */ }
7 *buf = 1; // null pointer dereference
8 nullable++; firstpos++; lastpos++;

Infer fails to report any bugs present in the source code of
those functions for which library models exist (expected). The
source code of such functions are ignored. This behavior may
result in supply-chain attacks going unnoticed by the tool.

CSA fails to report [46] a buffer overrun in the presence of
an intervening function call, presumably due to unsound early
termination in the tool’s path exploration (needs-fix).

Many of the bugs lost by CSA can be found by tuning the
analysis parameters (param). E.g., high values of the parameter
-maxloop, which controls the number of times a block can
be visited before giving up, finds many lost bugs.

Thus, BUG-INJECTOR generated benchmarks can expose
the various real-world scenarios in which an analysis tool can
fail to report a bug, which is of interest to both analysis users
and analysis developers.

E. Comparison with LAVA benchmarks

We run CSA and Infer tools on the LAVA-1 benchmarks.
The LAVA-1 benchmarks consist of 69 variations of the file
program, with each variant having one injected buffer overflow
bug. As discussed in § IV, we stipulate for the sake of this
evaluation that the bug location is the line consisting of a
lava_get() call, and give a tool credit for identifying the
bug if it specifies a location within 5 lines of this. In all LAVA-
1 test cases, we found that the lava_get() call location
matched the first location provided in the corresponding
backtrace included with the LAVA corpus.

CSA reports between 41 and 51 warnings on each of the
LAVA-1 benchmarks. In 58 of the 69 programs, CSA does
not report on any LAVA-injected bugs. In the remaining 11
programs, CSA issues warnings at the injected bug locations.
Upon manual inspection of each of these examples, we
determined these warnings to be unrelated to buffer overflows.7

7The reported warnings were one of: “pointer of type void* used in
arithmetic”, “nested extern declaration of vasprintf”, “implicit declaration
of function vasprintf”, “pointer arithmetic on non-array variables relies
on memory layout: which is dangerous”.

9

1 /* inside a for loop */
2 if (ml->map)
3 apprentice_unmap(((ml->map))+(lava_get())*((0x12345678
4 <= (lava_get()) && 0x123456f8 >= (lava_get())) ||
5 (0x12345678 <= __bswap_32((lava_get())) && 0x123456f8
6 >= __bswap_32((lava_get())))));
7 free(ml);

Fig. 4: Example LAVA-injected bug.

Infer reports between 16 and 18 warnings on each of the
LAVA-1 benchmarks. However, none of the Infer warnings are
at the LAVA-injected bug locations.

To summarize, both CSA and Infer report warnings on the
LAVA-1 benchmarks, but none of these are related to the
LAVA-injected bugs. Thus, the projected recall of both of
these tools is 0% on the LAVA-1 benchmarks. This result is
not particularly surprising, as LAVA is biased towards testing
the limits of fuzzing tools, and injects code that looks like
the snippet in Figure 4. Such bugs would typically be out of
scope for accurate reasoning by most static analysis tools, as
the tools have to make static approximations and/or heuristic
choices that balance precision, recall, and scalability. These
results—that leading open-source static analysis tools have
zero projected recall—indicate that LAVA benchmarks are not
well-suited for discriminating between different static analysis
tools (refer RQ2), or that they include bugs that are in scope
for the evaluated static analysis tools (refer RQ1). Also, LAVA
can only inject a very small number of bug kinds (refer RQ4).

Therefore, while LAVA has been successful in advancing
fuzzing techniques [47] and helping create capture-the-flag-
style competitions [28], it is less relevant in evaluating static
analysis tools.

VII. LIMITATIONS AND FUTURE WORK

BUG-INJECTOR currently chooses an injection point in the
host program uniformly at random from all the dynamic trace
points that match the bug template’s preconditions. Thus, host
program points that are exercised more frequently by the
accompanying tests are more likely to be used for injection,
as they appear more frequently in the dynamic traces. BUG-
INJECTOR can be combined with coverage-increasing input-
generation techniques like concolic testing [48] to obtain an
improved program-wide distribution of injected bugs.

BUG-INJECTOR does not currently support the injection of
concurrency-related bugs. We plan to add such support. Our
first step will be to improve instrumentation so that concurrency-
related information such as the current thread and process is
available in the trace.

BUG-INJECTOR cannot always inject a bug template into
a host program, because there is not always a dynamic trace
point that matches all the preconditions and free-variable
requirements for the template. To increase the chances of
finding injection points in a host program, we plan to enhance
BUG-INJECTOR to allow for variable rebinding to aggregate
structs and fields.

We envision running BUG-INJECTOR’s pipeline multiple
times in an evolutionarily-guided heuristic search. This process
would allow injection of multiple bugs into a single host
program, maximizing an objective function that balances factors
such as number of injected bugs, naturalness of code [49],
realistic distribution of bugs [50], [51], retention of the
original program behavior, and syntactic/stylistic similarity [52]
between the buggy program and the original program. BUG-
INJECTOR is built using SEL, which supports evolutionary
search with multi-objective fitness functions. Leveraging this
support, we have early prototypes that fulfill this vision.

Regarding our experimental methodology, the main threat
to validity relates to how we measure whether a tool finds a
specific injected bug, both for BUG-INJECTOR and LAVA test
cases. As we explain in §IV and §VI, we use simple heuristics
to match the location contained in the tool’s warning with the
location of the known bug and determine that the correct bug
has been identified if the bug types match and the locations
are within a certain maximum distance. We could refine this
heuristic by using more sophisticated matching techniques from
related work on the issue of deduplicating and/or clustering
tool warning reports [53], [54].

VIII. CONCLUSION

In this paper, we introduce BUG-INJECTOR, a system that
automatically generates bug-containing benchmarks suitable for
evaluating and testing software analysis tools. BUG-INJECTOR
operates by injecting bug templates into real-world programs,
and is able to create custom benchmarks that are real-world-
like, can draw from a wide variety of bug types, and come with
bug-triggering inputs. Our experimental evaluation shows that
BUG-INJECTOR benchmarks are useful for several purposes:
(a) showcasing bugs that are seemingly in scope for a tool
to find but that the tool misses, (b) discriminating between
and guiding the improvement of static analysis tools, and (c)
tuning tool parameters for a specific codebase. We also show
that BUG-INJECTOR can create bugs from multiple CWEs.

ACKNOWLEDGMENTS

This material is based on research sponsored by the De-
fense Advanced Research Projects Agency (DARPA) under
Contract No. D17PC00096 and the Department of Homeland
Security (DHS) Science and Technology Directorate, Cyber
Security Division (DHS S&T/CSD) via contract number
HHSP233201600062C. The views, opinions, findings, and
conclusions or recommendations contained herein are those
of the authors and should not be interpreted as necessarily
representing the official views policies or endorsements, either
expressed or implied, of DARPA or DHS. We would like to
thank Jeff Foster, Mikael Lindvall, Paul Black, Daniel Krupp,
Amy Gale, John Regehr, and the SAMATE group at NIST for
their feedback on our work.

10

REFERENCES

[1] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-
Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis,
“In defense of soundiness: A manifesto,” Communications of the ACM,
vol. 58, no. 2, 2015.

[2] P. E. Black, “Juliet 1.3 Test Suite: Changes From 1.2,” in National
Institute of Standards and Technology (NIST) Technical Note (TN) 1995,
June 2018.

[3] W. Vanderlinde, “Securely taking on new executable software of
uncertain provenance (STONESOUP),” http://www.iarpa.gov/index.php/
research-programs/stonesoup.

[4] S. Shiraishi, V. Mohan, and H. Marimuthu, “Test suites for benchmarks
of static analysis tools,” in Software Reliability Engineering Workshops
(ISSREW), 2015 IEEE International Symposium on. IEEE, 2015, pp.
12–15.

[5] “OWASP WebGoat Project,” https://www.owasp.org/index.php/Category:
OWASP_WebGoat_Project, accessed 2018-05-01.

[6] J. Wilander and M. Kamkar, “A comparison of publicly available tools
for static intrusion prevention,” in Nordic Workshop on Secure IT Systems
(NordSec), Karlstad, Sweden, 2002/11/07/November 7 2002, pp. 68–84,
karlstad, Sweden.

[7] Wilander, John and Kamkar, Mariam, “A comparison of publicly available
tools for dynamic buffer overflow prevention,” in Symposium on Network
and Distributed System Security (NDSS). The Internet Society, February
2003, pp. 149–162.

[8] T. Newsham and B. Chess, “Abm: A prototype for benchmarking
source code analyzers,” in Workshop on Software Security Assurance
Tools, Techniques, and Metrics. US National Institute of Standards and
Technology (NIST) Special Publication (SP), 2006, pp. 500–265.

[9] C. Timperley, S. Stepney, and C. Le Goues, “Poster: BugZoo – A Platform
for Studying Software Bugs,” in International Conference on Software
Engineering, ser. ICSE, 2018.

[10] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “BugBench:
Benchmarks for evaluating bug detection tools,” in Workshop on the
evaluation of software defect detection tools, vol. 5, 2005.

[11] G. Nilson, K. Wills, J. Stuckman, and J. Purtilo, “BugBox: A
vulnerability corpus for PHP web applications,” in Presented as part
of the 6th Workshop on Cyber Security Experimentation and Test.
Washington, D.C.: USENIX, 2013. [Online]. Available: https://www.
usenix.org/conference/cset13/workshop-program/presentation/Nilson

[12] “Stanford SecuriBench,” https://suif.stanford.edu/~livshits/securibench/,
accessed 2018-05-01.

[13] M. Zitser, R. Lippmann, and T. Leek, “Testing static analysis tools using
exploitable buffer overflows from open source code,” in ACM SIGSOFT
Software Engineering Notes, vol. 29, no. 6. ACM, 2004, pp. 97–106.

[14] NIST, “SARD test cases,” https://samate.nist.gov/SRD/testsuite.php,
accessed 2018-05-27.

[15] J. Pewny and T. Holz, “EvilCoder: automated bug insertion,” in
Proceedings of the 32nd Annual Conference on Computer Security
Applications. ACM, 2016, pp. 214–225.

[16] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson,
F. Ulrich, and R. Whelan, “LAVA: Large-scale automated vulnerability
addition,” in Security and Privacy (SP), 2016 IEEE Symposium on. IEEE,
2016, pp. 110–121.

[17] S. Roy, A. Pandey, B. Dolan-Gavitt, and Y. Hu, “Bug synthesis:
Challenging bug-finding tools with deep faults,” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2018. New York, NY, USA: ACM, 2018, pp. 224–234.

[18] A. Delaitre, B. Stivalet, E. Fong, and V. Okun, “Evaluating bug finders,”
in First International Workshop on Complex faUlts and Failures in LargE
Software Systems (COUFLESS), 2015.

[19] J. Herter, D. Kastner, C. Mallon, and R. Wilhelm, “Benchmarking static
code analyzers,” in Computer Safety, Reliability, and Security. Cham:
Springer International Publishing, 2017, pp. 197–212.

[20] “Common Weakness Enumeration - a community-developed list of
software weakness types.” https://cwe.mitre.org/, accessed 2018-04-24.

[21] “Clang static analyzer,” https://clang-analyzer.llvm.org/, accessed 2018-
05-21.

[22] “Infer,” http://fbinfer.com/, accessed 2018-05-21.
[23] “LAVA synthetic bug corpora,” http://moyix.blogspot.com/2016/10/

the-lava-synthetic-bug-corpora.html, accessed 2018-05-31.

[24] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y.-C. Liu, P. T.
Devanbu, B. Vasilescu, and C. Rubio-González, “Bugswarm: Mining
and continuously growing a dataset of reproducible failures and fixes,”
in International Conference on Software Engineering, ser. ICSE ’19.
Piscataway, NJ, USA: IEEE Press, 2019, pp. 339–349. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00048

[25] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The ManyBugs and IntroClass benchmarks
for automated repair of C programs,” IEEE Transactions on Software
Engineering (TSE), vol. 41, no. 12, pp. 1236–1256, December 2015,
DOI: 10.1109/TSE.2015.2454513.

[26] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
International Symposium on Software Testing and Analysis. ACM,
2014.

[27] A. Habib and M. Pradel, “How many of all bugs do we find? a study
of static bug detectors,” in ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE. ACM, 2018.

[28] P. Hulin, A. Davis, R. Sridhar, A. Fasano, C. Gallagher, A. Sedlacek,
T. Leek, and B. Dolan-Gavitt, “Autoctf: creating diverse pwnables
via automated bug injection,” in USENIX Workshop on Offensive
Technologies (WOOT). USENIX Association, 2017.

[29] “The Heartbleed Bug,” http://heartbleed.com/, accessed 2018-07-11.
[30] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data

selection: Help for the practicing programmer,” Computer, April 1978.
[31] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE

Transactions on Software Engineering, vol. SE-3, no. 4, pp. 279–290,
July 1977.

[32] M. Christakis, P. Emmisberger, P. Godefroid, and P. Müller, “A general
framework for dynamic stub injection,” in "International Conference on
Software Engineering (ICSE)". Piscataway, NJ, USA: IEEE Press, 2017,
pp. 586–596. [Online]. Available: https://doi.org/10.1109/ICSE.2017.60

[33] P. D. Marinescu and G. Candea, “Lfi: A practical and general library-level
fault injector,” in IEEE/IFIP International Conference on Dependable
Systems Networks, June 2009, pp. 379–388.

[34] E. Martins, C. M. F. Rubira, and N. G. M. Leme, “Jaca: a reflective
fault injection tool based on patterns,” in International Conference on
Dependable Systems and Networks, June 2002, pp. 483–487.

[35] E. Schulte and Contributors, Software Evolution Library, GrammaTech,
eschulte@grammatech.com, 1 2018, https://grammatech.github.io/sel/.

[36] “Static Analysis for C++ with Phasar,” http://phasar.org/wp-content/
uploads/2018/06/phasar_block_2-3.pdf, slide 37, Accessed 2018-06-30.

[37] NIST, “SATE: Static Analysis Tool Exposition,” https://samate.nist.gov/
SATE.html.

[38] V. Kashyap, J. Ruchti, L. Kot, E. Turetsky, R. Swords, S. A. Pan,
J. Henry, D. Melski, and E. Schulte, “Bug Injector Benchmarks
for IEEE SCAM 2019,” Jul. 2019. [Online]. Available: https:
//doi.org/10.5281/zenodo.3341585

[39] “Gnu grep,” http://www.gnu.org/savannah-checkouts/gnu/grep/, accessed
2018-05-28.

[40] “nginx,” http://www.nginx.com/, accessed 2018-05-28.
[41] “Clang static analyzer: Available checkers,” http://clang-analyzer.llvm.

org/available_checks.html/, accessed 2018-05-28.
[42] “Inferbo: Infer-based buffer overrun analyzer,” http://research.fb.com/

inferbo-infer-based-buffer-overrun-analyzer/, accessed 2018-05-28.
[43] “Infer: Regression tests,” http://github.com/facebook/infer/tree/master/

infer/tests, accessed 2018-05-28.
[44] “Infer bug report,” https://github.com/facebook/infer/issues/1093, 2019.
[45] “Infer bug report,” https://github.com/facebook/infer/issues/1094, 2019.
[46] “Clang static analyzer bug report,” https://bugs.llvm.org/show_bug.cgi?

id=41833, 2019.
[47] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,

“Vuzzer: Application-aware evolutionary fuzzing,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2017.

[48] R. Majumdar and K. Sen, “Hybrid concolic testing,” in ICSE, 2007.
[49] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and

P. Devanbu, “On the "naturalness" of buggy code,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 428–439. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884848

[50] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large
industrial software system,” in International Symposium on Software
Testing and Analysis, 2002, pp. 55–64.

11

http://www.iarpa.gov/index.php/research-programs/stonesoup
http://www.iarpa.gov/index.php/research-programs/stonesoup
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.usenix.org/conference/cset13/workshop-program/presentation/Nilson
https://www.usenix.org/conference/cset13/workshop-program/presentation/Nilson
https://suif.stanford.edu/~livshits/securibench/
https://samate.nist.gov/SRD/testsuite.php
https://cwe.mitre.org/
https://clang-analyzer.llvm.org/
http://fbinfer.com/
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
https://doi.org/10.1109/ICSE.2019.00048
http://dx.doi.org/10.1109/TSE.2015.2454513
http://heartbleed.com/
https://doi.org/10.1109/ICSE.2017.60
http://phasar.org/wp-content/uploads/2018/06/phasar_block_2-3.pdf
http://phasar.org/wp-content/uploads/2018/06/phasar_block_2-3.pdf
https://samate.nist.gov/SATE.html
https://samate.nist.gov/SATE.html
https://doi.org/10.5281/zenodo.3341585
https://doi.org/10.5281/zenodo.3341585
http://www.gnu.org/savannah-checkouts/gnu/grep/
http://www.nginx.com/
http://clang-analyzer.llvm.org/available_checks.html/
http://clang-analyzer.llvm.org/available_checks.html/
http://research.fb.com/inferbo-infer-based-buffer-overrun-analyzer/
http://research.fb.com/inferbo-infer-based-buffer-overrun-analyzer/
http://github.com/facebook/infer/tree/master/infer/tests
http://github.com/facebook/infer/tree/master/infer/tests
https://github.com/facebook/infer/issues/1093
https://github.com/facebook/infer/issues/1094
https://bugs.llvm.org/show_bug.cgi?id=41833
https://bugs.llvm.org/show_bug.cgi?id=41833
http://doi.acm.org/10.1145/2884781.2884848

[51] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures
in a complex software system,” IEEE Trans. Softw. Eng., vol. 26, no. 8,
pp. 797–814, 2000.

[52] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt, “De-anonymizing programmers via code
stylometry,” in 24th USENIX Security Symposium (USENIX Security 15),
2015, pp. 255–270.

[53] Z. P. Fry and W. Weimer, “Clustering static analysis defect reports to
reduce maintenance costs,” in 2013 20th Working Conference on Reverse
Engineering (WCRE), Oct 2013, pp. 282–291.

[54] T. Muske and A. Serebrenik, “Survey of approaches for handling static
analysis alarms,” in 2016 IEEE 16th International Working Conference
on Source Code Analysis and Manipulation (SCAM), Oct 2016, pp.
157–166.

12

