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Abstract

Information flow is an important security property that mbstin-
corporated from the ground up, including at hardware desige,
to provide a formal basis for a system'’s root of trust. We ipooate
insights and techniques from designing information-floeuse
programming languages to provide a new perspective on riesig
ing secure hardware. We describe a new hardware description
guage, Caisson, that combines domain-specific abstractiom-
mon to hardware design with insights from type-based tegles
used in secure programming languages. The proper continati
these elements allows for an expressive, provably-seciethiat
operates at a familiar level of abstraction to the targetemae® of
the language, hardware architects.

We have implemented a compiler for Caisson that translates d
signs into Verilog and then synthesizes the designs usirsgirx
tools. As an example of Caisson’s usefulness we have addiass
open problem in secure hardware by creating the first-evar-pr
ably information-flow secure processor with micro-arctiiteal
features including pipelining and cache. We synthesizesdueire
processor and empirically compare it in terms of chip aremey
consumption, and clock frequency with both a standard ¢ins9
commercial processor and also a processor augmented aatde g
level to dynamically track information flow. Our process®com-
petitive with the insecure processor and significantly dyetihan
dynamic tracking.

Categories and Subject Descriptors  B.6.3 [Design Aids Hard-
ware Description Languages
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information never leaks to unclassified outputs, or they naay
get integrity, so that untrusted data can never affectcatigystem
data. The high cost of a policy violation ensures that thgstems
are evaluated extensively before being deployed; for imtgtacer-
tifying systems using Common Criteria [2] or FIPS [3] reqsira
painstaking process at a cost of millions of dollars overtipia
years [4].

Information flow policies are expressed using a lattice ofise
rity levels [14] such that higher elements in the latticerespond
to information with more restricted flow (i.e., secret infation
for confidentiality or untrusted information for integrtyA simple
example of a security lattice would be the typical militaftgse
sification levels:Unclassified C Secret T Top Secret. An
important information flow policy based on such latticesan-
interference[18], which requires that no information at a given
level in the lattice can flow anywhere except to higher elemen
in the lattice (e.g.Secret information can flow tdTop Secret,
but not vice-versa). High-assurance systems require ia sfiar-
antee of non-interference and depend draedware-based root of
trustto enforce this policy. We present a new hardware descriptio
language named Caisson that meets this need by extending HDL
like Verilog with language abstractions that enable peedtatic
verification of secure synchronous hardware designs.

1.1 Secure Hardware Design

While ciphers provide a sound theoretical primitive forlBing se-
cure systems, their actuashplementationfiave been shown to be
a rich source of vulnerabilities. Numerous attacks exlaitdware
structures such as shared data caches [35], instructidres46],
and branch predictors [5, 7] to leak information about feveeys.
Other studies have found vulnerabilities lurking in obscand
even undocumented corners of hardware designs [41], ehgnw
the floating point registers are persistent across conteittises.
Complete information flow security must begin with a pridep
approach to designing hardware that accounts for the &éim-

High-assurance embedded systems such as those used in bankgsraction among different hardware components, analyesisard-

aircraft and cryptographic devices all demand strong gueaes on
information flow. Policies may target confidentiality, satlsecret
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ware design in its entirety, and does so efficiently enoudietose-
ful in practice. Note that non-digital side channels suclp@aser
analysis [25] are not within the scope of this paper.

Existing work has explored using hardware assistance to dy-
namically track information flow and prohibit leaks [12, B8, 43].
However, most such systems only track information flow at the
ISA level or above, ignoring micro-architectural featusesh as
caches and branch predictors that can leak informatiors€ bgs-
tems cannot protect against the attacks outlined above.

One existing system, GLIFT [46], dynamically tracks inf@m
tion flow at the gate-level and does take micro-architettiea



tures into account; however, this technique requires tfarnma-
tion tracking logic to be physically instantiated in the #asized
circuit, greatly increasing chip area and power consumptdso,
GLIFT only detects policy violations at runtime; it cannatagan-

tee statically that no violations will occur. GLIFT is cuntéy the
only alternative for enforcing information flow for an emtiproces-
sor below the ISA level of abstraction, and we use GLIFT as our
main comparison point in our evaluation.

1.2 Our Approach

In contrast to existing approaches, we take language-teatl-
niques for secure information flow and apply them to domain-
specific abstractions for hardware design (specificalljtefistate
machines) to create a new Hardware Description LanguagéYHD
named Caisson. Our goal is to enable the creation of synohson
hardware designs that are statically-verifiable as seéufitional
benefits of Caisson are that it allows hardware designerpeate
at familiar level of abstraction, enables architects tackiyi and
easily iterate through potential designs without havingvéit for
synthesis and simulation to test security properties, haddsult-
ing designs do not suffer from the crippling overhead thahe®
with dynamic tracking in terms of additional chip area angveo
consumption

While there are existing HDLs based on finite state machines,
none target security as a first-class concern. Caisson gmplo
two novel features on top of finite state machinessted states
and parameterized state@escribed ing2) to enable precise and
expressive enforcement of security policies. To demotestitae
utility of these features and of Caisson in general, we desiy
information-flow secure processor in Caisson. Designinguree
hardware controllers is an active research area, and gperif
statically-verifiable secure general-purpose process@ni open
problem. Such processors have an important applicationgim-h
assurance embedded systems such as those found in airataft a
automobiles [27]. Current tools and methodologies for sebard-
ware design are laborious and expensive (taking milliordotiars
and multiple years to complete even simple designs); a gener
purpose processor with microarchitectural features saqipeelin-
ing and cache is notorious in the hardware community fordpein
too complicated to design in a verifiably secure manner.

Figure 1. State Machine Diagram of Execution Lease Controller

features. I3 we formalize the language description and provide a
proof sketch of its security properties. 4 we describe the design
of a secure processor in Caisson and empirically evaluatettar-
acteristics of the synthesized design against a compa@bleT
hardware desigri5 discusses related work, af@é concludes.

2. Overview of Caisson

In this section we provide an overview of the Caisson languagl
motivate its design via a simple hardware example. For eecr
ness, we specifically address the issue of integrity usindexet
lattice Trusted C Untrusted® (though Caisson can be used for
arbitrary lattices). We demonstrate the Caisson languagejan
Execution Lease secure hardware controller [45]. We firdgeve
the concept of execution leases, then demonstrate howdDaias
create a statically-verifiable instantiation of an exemutease con-
troller.

Execution Leases An execution lease is an architectural mech-
anism used to allow trusted code to grant untrusted codéelimi
access to machine resources. One use-case is to allow edtrust
separation kernel [24] to securely multiplex multiple wisted pro-
cesses on a CPU. One can think of a lease as a space-time sandbo
that allows an untrusted process to take over the CPU anditexec
code using only a limited range of memory and a limited amount
of time; the lease mechanism forces untrusted code to retihg
control back to the trusted code when its time allotment regpi
Figure 1 gives a state-machine diagram of the executioe leas-
troller. The trusted master state sets a timer and transéertsol to
either the untrusted set of slave states (S1 and S2) or tstedrset

Caisson is based on key insights into secure hardware design of slave states (S3 and S4). Each set of slave states caititrans

and it provides language-level support for these desigtemet
We believe, and have found in our own experience, that Caisso
promotesthinking about secure hardware design in new, useful
ways that don’t naturally arise in existing languages.

1.3 Contributions
This paper makes the following specific contributions:

¢ We describe Caisson, a hardware description languagditayge
statically-verifiable information-flow secure hardwarside.

¢ We formally prove that Caisson enforces timing-sensitioa-n
interference.

¢ We design and implement a verifiably information-flow secure
processor with complex micro-architectural featuresudiig
pipelining and cache.

¢ We synthesize our design and empirically compare it witman i

among themselves arbitrarily during the lease, but onceirtier
expires, control is relinguished back to the trusted masttge.

Caisson Language Finite-state representations of hardware con-
trol systems, such as in Figure 1, are popular in hardwargmles
Existing tools such as Altera Quartus, Xilinx ISE, Statethf20],
and Esterel [44] are widely used to model systems explictly
state machines. In designing Caisson we wish to capitatizie
trend and allow hardware designers to operate at a fanéat bf
abstraction, allowing hardware designs to be easily ansjrar-
ently modeled using Caisson. For this reason, we base tlss@ai
language orfinite-state machinesTo illustrate this concept, Fig-
ure Ja) shows a Caisson implementation of the lease controller.
This implementation is secure (i.e., does not |gakrusted in-
formation), but it isnot typable in the Caisson type system we in-
troduce in Section 3. We will use this version of the impletaion

to motivate and introduce two features of Caisswsted stateand

secure commercial CPU design as well as a GLIFT CPU design Parameterized statefirst, though, we give a quick illustration of

that dynamically tracks information flow. We find that Caisso

introduces much less overhead than GLIFT over the baseline

processor in terms of chip area (1:8%s. 3.34x), clock fre-
quency (1.4& vs. 2.63«<) and power (1.02 vs. 2.82%).

The rest of the paper is organized as follows. We begifi2in
by informally describing the Caisson language and motiggiis

the Caisson language using Figua)2
The name of the entire programlisase, and it uses four hard-
ware registerstimer, datal, data2, andmode. Each register has

1This ordering can be confusing, but is corrétitrusted is highin the
lattice because the flow of untrusted information should loeemestricted
than the flow of trusted information.



prog lease = timer:L, datal: H, data2: L , mode:L
in
let state master:L = {
if mode =0
then mode := 1 goto S1
else mode := 0 goto S3

}
state S1:H = {
timer := timer - 1;
if timer = 0 then goto master else sk
if datal = 0 then goto S2 else goto S1
}
state S2:H = {
timer := timer — 1;
if timer!l = O then goto master else -
if datal = 0 then goto S1 else goto S2

state S3:L = {
timer := timer - 1;
if timer = 0 then goto master else:skQ;
if data2 = 0 then goto S4 else goto S3

state S4:L = {
timer := timer - 1;
if timer = 0 then goto master else SKips
if data2 = 0 then goto S3 else goto S4

in fall

prog lease = timer:L, datal: H, data2: L , mode:L
in
let state master:L = {
if mode =0
then mode := 1; goto groupl
else mode :=0; goto group2
}
state groupl:L = {
let state SI:H = {
if datal = 0 then goto S2 else goto S1
}
state S2:H = {
if datal = 0 then goto S1 else goto S2
}
in
timer := timer - 1;
if timer = 0 then goto master else fall

}
state group2:L = {
let state S3:L = {
if data2 = 0 then goto S4 else goto S3

}
state S4:L = {
if data2 = 0 then goto S3 else goto S4
}
in
timer := timer - 1;
if timer = 0 then goto master else fall

prog lease = timer:L, datal: H, data2: L , mode:L
in
let state master:L() = {
if mode =0
then mode := 1; goto'group(datal)
else mode := 0; gotd group(data2)
}
state group:L (data: A) [L < A] = {
let state SI:A() = {
if data = 0 then goto S2 else goto S1
}
state S2:A() = {
if data = 0 then goto S1 else goto S2
}
in
timer := timer - 1;
if timer = O then goto master else fall

}
irf fall

}
(a) in fall (b)

(c)

Figure 2. Implementation of the Lease Controller in Caisson languéaelmplementation only with the ability to explicitly daé each
individual state (b) Implementation with nested statesr(g)lementation with parameterized states.

type L (ow, i.e.Trusted) except fordatail, which is H figh, i.e.

example, each time the code transitions frétrto S2 usinggoto,

Untrusted). There are five states corresponding to the five states the command fogroup1 that decrements and checkimer exe-

in Figure 1;master, S3, andsS4 are Trusted, while S1 and S2
areUntrusted. Themaster state usemode to alternately transfer
control (using thgoto command) to eithe$1 or S3. Each ofS1—
S4 are similar: they decrementimer, check whethetimer is O,
and if so transition back to theaster state. Otherwise, depend-
ing on the value oflatal (data2), they transition to themselves or
their fellow slave state. Each state corresponds to a catibiral
hardware logic circuit and takes exactly one cycle to execut

The reason that Figure(@) is not typable is thatimer is
decremented in stat€d andS2. These states atlntrusted, yet
they manipulat&rusted information (i.e.,timer). This manipu-
lation can create an implicit information leak from the higgru-
rity level (Untrusted) to the low security levelTrusted)—if the
Untrusted states modify th&@rusted registertimer in different
ways, then the value afimer would depend on whictintrusted
states are executed. Intuitively, however, we can see lieati¢-
sign actuallyis secure: sincevery state is guaranteed to decre-
menttimer in exactly the same way, in reality there is no informa-
tion leakage—nothing about thimtrusted states or transitions
between those states can be inferred from the valugmér.

Nested States This observation motivates the first Caisson lan-
guage featurenested statesNested states allow the designer to
factor out shared code among states to identify exactly sitah-
tions. Figure 2b) gives a valid (i.e., typable) Caisson implementa-
tion of the same design but using nested states. This des&s n
statesS1 andsSz2 into the samegroup stategroup1, and similarly
nestss3 ands4 into group2. In each group, the code common to

cutes before the command fe2. The fall command signals that
the group state’'s command is complete and to begin exectiting
appropriate child state’s command. When transitioning ¢gpcap
state (as in theaster state’s commandgoto groupl” in Fig-
ure b)), the default fall-through state is the first listed statg.(e
S1 for group statgroup1).

The benefit of nested states is that Caisson is allowed toaype
group state separately from the its child states. In Fig(log &ate
groupl is typed L {ow, or Trusted) while its child states1 and
S2 are typed H ljigh, or Untrusted). As explained above, this is
safe because the semantics of Caisson guaranteegrithigii’s
command executes identically in each child state, and saho i
formation is leaked even thougfroupi’s command modifies
Trusted information.

Note that nested states are distinct from the related concep
of hierarchical statesn languages like Statecharts [20]. In State-
charts, child statespecializeparent states. If an event is not han-
dled by a child state, then the parent states are checketiordee
if they can handle the event (somewhat like OOP virtual netho
Caisson’s nested states have different semantics, asiregblan-
formally above and formally i3. Nested states can also be seen
as a concept dual to the notion lofiear continuations[16, 55].
Whereas linear continuations identify code that is guaeahto be
executedafterwardsby factoring the code out into a continuation,
nested states identify code that is guaranteed to be exHuoefiere-
handby factoring it out into a group state.

Parameterized States While Figure Zb) is a valid Caisson pro-

the nested (ochild) states has been factored out and associated gram, it is not as efficient as it could be. Note thabupl and

with the group state containing those child states. The stoseof
nested states effectively treats the command of a group asaf it
were inlined into the command of each child state, so the aode
Figure Zb) has the same behavior as the code in Fige. For

group2 have identical logic; the only difference is thgtoupl
operates orUntrusted data @atal) while group2 operates on
Trusted data @lata2). Therefore the two groups must be kept sep-
arate. When synthesizing this design, each group would be co



piled down to its own separate logic circuit. It would be mefe
ficient in terms of chip area to synthesize tsemelogic circuit
for the two groups and reuse that circuit by securely mudkiplg
the different datadatal vsdata2) onto that circuit. This observa-
tion motivates the second Caisson language feapamrameterized
states Figure Zc) shows the same program as Figu(tb)2xcept
using parameterized states.

This new implementation has a singigoup state that now
has aparameter a variable that represents some register on which
the state will operate. Since the exact register that the stél
operate on can vary each time the state executes, Caisserause
type variable A to represent the parameter’s type and spsdifi
set of type constraints that the type variable must obey dieroto
guarantee security (in this example, the only requirenetitat A
must be no less than L). The Caisson implementation assumaes t
given type constraints are valid when it type-chegksup.

When transitioning to a parameterized state giéwe command
must specify a particular register to pass as the target'stpa-
rameter. In Figure @), themaster state transitions tgroup with
two different arguments depending ande: eitherdatal, repli-
cating the behavior of the originglroup1, or data2, replicating
the behavior of the originairoup2. The Caisson implementation
statically verifies that any arguments given to a paranegdrstate
must necessarily satisfy the given type constraints, byestati-
cally guaranteeing the security of the design.

The benefit of parameterized states is that Caisson canesynth
size a single logic circuit that can safely be used at matggicurity
levels. In other words, the data being operated on (the Qaiggy-
isters) must have distinct types, but the logic operatinghendata
(the Caisson states) can be parameterized over the types ddta,
making the synthesized circuit much more efficient.

3. Formal Description of Caisson

In this section we formally describe a core subset of Caiasakits
type system and prove that Caisson enforces timing-seasitin-
interference. The actual implementation of Caisson inc@ies a
large subset of Verilog, allowing existing Verilog desidode eas-
ily refactored into Caisson programs. This subset of Vgriloes
not add anything of interest to the formal presentation and/s
omit the full details from this section.

Figure 3 describes Caisson’s abstract syntax (which upesty
as described in Figure 5—we defer discussion of type$3ta).
Registers in the language correspond to registers in haedared
hold integer values. Variables range over registers ratizr val-
ues (i.e., a variable maps to a register) and act as statmptas
to abstract a state’s behavior from specific registers.

A Caisson program consists of a list of registers followedaby
list of nested state definitions. The nested state defigitform a
hierarchy of states with a singteot state. We define eaf stateas
a state at the bottom of the state hierarchy; these statespacify
a single command. group statds any non-leaf state and specifies
both (1) a nested list of states and (2) a command. b
command triggers a state transition. Caisson describesgymous
hardware designs, hence the language implementation cesfor
that the length of time between any two state transitiorss, (i.
gotos) is exactly one cycle. Within each cycle, Caisson enforces
the following invariant: before executing the command of atate
S, Caisson executes the commands of alfsfancestor states (the
intended semantics of nested states).

The fall command forces execution to fall-through from the
current state to one of its child states: it ends evaluatibthe
current state’s command and begins the evaluation of the chi
state’'s command. Falling from a state to its child does nonto
as a state transition (i.e.fall command does not end a cycle, only
agoto command can do that). By default the target child state of

r € Register v € Variable

n €7

x € Registeru Variable
@ € Operator [ € Program Label
prog € Prog ::= prog | = 77 in d
deDef:=letFinc | ¢
s € State::= state [, (V&) Kk =d
ecExpi=n |z | ede
ceCmd:=skip | z:=¢ | ¢;c | fall
| goto I(%) | if e then c else ¢
p € Phrase:=prog | d | s | e | ¢

Figure 3. Abstract syntax. Type annotatiods o, 7, and s are
described in Figure 5

a fall command is the first child state in the list of nested state
definitions; this state is called thefault child stateof that group
state. The target child state forfall may change during program
execution as described in the next subsection.

To simplify the formal presentation of the language we make t
following assumptions without explicitly enforcing theth@¢ugh it
is simple to do so in practice):

¢ All the variables and type variables have distinct names.

o A default child state can not take any parameters.

e Everygoto targets a defined label and can only target a state in
the same group and at the same nested depth

e For eachfall;, the subscript label must be the label of the
state containing thafall command (the label is a syntactic
convenience for the semantics and type system; it can be left
out of the concrete syntax). A leaf state can not contdilla

e Either both branches of dficommand must executegato or
fall or neither of them do. All paths through a state end in either
agoto or afall.

The structure of a program defines a tree of state definitibies (
state hierarchy) witlprog being at the root. From this structure we
derive different versions of a functidfi: [ — (7 U p U 1) that for
each program labélgives the following mappings:

e Fpni(l) maps to the label of stalés parent state.

® Fye(l) maps to the label of statss default child state.
® Fcmd(l) maps to statés command.

o Fprm(l) maps to statés parameters.

In addition, Froot maps to the root command of tipeog pro-
gram phrase.
3.1 Semantics

Figure 4 shows the small-step operational semantics ofsGais
This figure gives the abstract machine configuration, defihes
evaluation context, and gives the small-step transitidestu

2This requirement is due to the semantics of nested statesattjet of

a goto influences which ancestor states’ commands execute, wbiald ¢
leak information without this restriction. This restrmti does not greatly
impact expressiveness: we can still get from any state to#rsr state by
constructing a sequence gbtos, though we won't necessarily get there in
a single cycle.



yeEn: (vi>r)U(l—1) o € Store: r —n

6 € Time: N C € Config: {p,v,0,9)
E:=0]| E®e | n®FE |z:=E | E;c
| progl=7,inE | let §inE
(Elr],,0,6) ~ (E[o(r)],v,0,0)

(REG)

(Elv],7,0,68) ~ (E[o(v(v))],7,0,0) (VAR)

<E[n1 ®n2]777075> ~ <E[n1 [[@]] n2]7’770—75> (OP)

<e777‘776> " <n777076>
(Elr :=e€l,vy,0,0) ~ (E[skip],v,o[r — n],d)

(ASSIGN-R)

(e,7,0,0) ~" (n,v,0,0)

(Elo = eI, ,,8) — (Blskip], 7, o[ (0) > ], 5) 5%O™Y)

:n=0

* ’_
(€,7,0,0) ~" (n,v,0,0) ¢ —{ n£0

(EJif e then c; else c2],7,0,d) ~ (E[c],7,0,6)

C1
C2

(1F)

<E[Skip ’ 0]777‘776> ~ <E[C]777U76> (SEQ)

<E[fa"l]7 Y0, 5) ~ <?Cmd(7(l))7 v, 0, 5> (FALL)
"= Rese¢77 l)
Y2 = 71 [Fpnt(l) = 1]
73 = Y2[Fprm(1) = ()]
(F[goto I(%)],~,0,0) ~ (Froot, ¥3,0,d+1)

(coT0)

Figure 4. Small-step semantic rules for Caisser’(s the reflex-
ive transitive closure of-).

The abstract machine configuration consists of the curnment p
gram phrasey, an environmenty, a stores, and a time value.
The environmenty maps variables (state parameters) to registers
and maps state labels to other state labels; the staraps reg-
isters to values; andl is the current time measured in cycles. The
mapping from labels to labels inrecords for each statéts target
child state (i.e., the command to begin evaluatinigeiecutes #all
command—uwe initialize the mapping to the default child esat
The rules are fairly standard except fall and goto, which we
now describe in detail.

The FALL rule applies when executing fall, command. The
rule looks up iny the target child state for the current stateecall
that we requird for a commandall; to be the label of the current
state) and begins executing that target child state’s cardma

The coTorule applies when executinggbto command. The
rule does three things: (1) creates a new environmeastdescribed
below; (2) increments the timé, since a state transition marks
the beginning of a new cycle; and (3) begins evaluating tle¢ ro
command at the top of the state hierarchy.

The most complex part of theoTorule is the set of premises
that create the new environmefi with which we evaluate the
root command. The key is to understand the intended sersantic

of nested states: upon each state transition to a state must
maintain the invariant that all ofs ancestor states’ commands
execute before executings command. Hence, thgoto sets the
next command tdFroot rather than the command of the target
state. When evaluating a state’s command it will eventuatcute
either anothegoto (restarting this whose process) ofal. The
environment must map each state’s target child state suah th
a sequence ofalls will follow the correct path down the state
hierarchy to eventually readhthe original target of thgoto that
began the current cycle.

The first premise uses a helper functi®asetwhich we define
here:Resettakes an environment and a state labdland returns
a new environmenty’ identical toy except that label and the
labels of all states that are descendents iof the state hierarchy
are mapped to their default child states (the same as thgalin
values). This ensures that each time the program transitom
state group, any prior evaluations of that state group dafiett
the current evaluation.

The second premise looks Uip parent stateXpnt(1)) and sets
the parent state’s target child state to/b&his ensures that when
evaluating the parent state’s command and executifa)l aexe-
cution will fall-through to the correct child state (i.¢), The last
premise maps the target stdgeparameters to the arguments of the
goto command.

3.1.1 Example

Consider the code in Figurdl®) and assumeode is initialized to
0 andtimer is initialized to 3. Note thaffroot is the outermosfall
command (at the bottom of the code). Execution will proceetié
following manner,where (X) represents cycle X in the execution:

CO The outermodhall command is executed, which by default falls
through to stateaster. Since thdf guard is truempode is set to
1 and the commangoto groupl is executed. TheoTorule
changes the environment so that the fall-through statews no
groupl instead ofnaster and resets the next command to be
?root-

C1 The outermosffall command is executed. Because of the
changed environment, control falls through to stgteupi.
timer is decremented to 2; sinegmer is not O the else branch
is taken and théall command is executed. By default, control
falls through to stat@1. Assume thatiatal = 0; then the com-
mandgoto S2 is executed. This changes the environment so
that the fall-through state fafroup1 is now S2 instead ofS1
and resets the next command to%eot.

C2 The outermosfall command is executed. As previously, con-
trol falls through to statgroup1 andtimer is decremented to
1. Sincetimer is not O the else branch is taken and fakkcom-
mand is executed. Because of the changed environment tontro
falls through to state2. Assumedatal is now 1; then the com-
mandgoto S2 is executed, which leaves the environment un-
changed and resets the next command tGb&.

C3 The outermodill command is executed. As previously, control
falls through to statgroupl andtimer is decremented to O.
Sincetimer is now 0, the true branch is taken and the command
goto master iS executed; this changes the environment so
groupl’s fall-through state goes back to its default (is.) and
the root fall-through state is nowaster instead ofgroupi,
and resets the next command tofgot.

C4 The logic from cycle CO is repeated, except thade = 1 and
so the program will transition tgroup2 instead ofgroup1.
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Figure 5. Types

3.2 Type System

Figure 5 gives the types used by our language. The base types a
elements of the security lattic®. Type variables range over base
types and are implicitly universally quantified. We assuraehe
state uses a disjoint set of type variables. The type vasaaie
bounded by the type constraintswvhich specify required subtype
relations among the type variables and base types. The ygpens
statically checks that afloto commands satisfy these constraints.

Expressions have type commands have typend ., and states
have type st,(d, k). We omit the standard subtyping rules: ex-
pression types are covariant (7 means that contains no vari-
ables or registers greater tha)y) command types are contravariant
(c : cmd- means that does not change the state of any variable
or register less than); and state types are invariant:@st, (&, <)
means that, assuming the state parameters havedbes satisfy
the constraints i, the state’s command is typed.).

The program syntax explicitly notes the types of each regist
and state; we use this information to initialize the typeiemment
P:(r—=0OU@r a)U(l — st (d,k)) Uk. I maps all
registers to a base type, all state parameters to a typélgrand
all state labels to a state type, and also records the typraams
in all k. The whole program (i.e. threot state) is always mapped to
st (-,-). I" also records the subtype relations between base types
(i.e., security labels) as given in the security latticexc®l” remains
constant, we factor it out of the individual type rules.

Most of the rules are standard (see, e.g., Volpano et al [51])
except for rules-FALL andT-GoTowhich we now explain in de-
tail. Rule T-FALL states that if the type of the default child state’s
command iscmd, then so must be the type of the current state’s
command. This requirement is due to the differing semantfcs
fall andgoto commands: $all command immediately begins exe-
cuting the child state’s command, whereaso#o begins executing
the root commandroot. Without this rule, if a conditional with a
high guard has goto in one branch and £all in the other then
a low observer might be able to observe the outcome of the con-
ditional based on whether execution proceeds fthgat or not.
The rule only needs to check the type of the default childe&at
command Fema(Faet(l))) even though at runtime a state can fall-
through to any child state. Since we require transitionstrbego
neighbor states in the state hierarchy, other child steaesoaly
be reached via the default child state. Thus, typing coersist be-
tween the parent state and all its child states is enforadideictly
by a combination of the-FALL andT-GoToOTrules.

The most complicated type ruleiscoTo. Thegoto command
has a target stateand a list of arguments. The type rule must
accomplish two things:

e It must verify that the argumentg given to thegoto satisfy
the type constraints of the target staté This requirement is
checked by the first premise on the second line of the type rule
Statel’s type constraints are modified to map the type of each
state parameter to the type of its corresponding arguméant (v
k[d@ — T'(Z)]); then the resulting type constraints are verified
to be valid assertions (i.e., that the constraints can bieeater
using the sub-typing rules and the informatioriin

n:l (T-coNnsT)
F f
(@) =7 (T-REG/VAR)
X T
€1 . T €2 . T
T-OP)
etdex: T ( )
I = :
(@) =7 7 (T-ASSIGN)
xr = e:cmd,
e:T c1 : cmd, co : cmd, (T IF)
if ¢ then c; else c2 : cmd,
c1 : cmd, co : cmd, (T-SE Q)
c1 ; c2 :cmd,
skip : cmdT (T-sSKIP)
I'(l) = st-(d, k) FemdTder(!)) : cmd- (T-FALL)
fall; : cmd-
I(l) = st-(d, k)
F kla@ — T'(Z)] HT/ =7[d — T'(2)] (T-GoT9)
goto () : cmd,/
I'(l) = st~ _‘7 d: d,
W= H(a ~) Cin (T-STATE)
state I, (Vo) k =d : st (&, k)
Si t str, (0, ki) c: cmd,
T-DEF
let 5in c:cmd, ( )
d: cmd,
o (T-PROG

prog [ =77 in d: cmd,

Figure 6. Caisson type rules

e |t must also confirm the type of thgoto command in the
conclusion of the rule. This is confirmed by the last premise o
the second line of the rule. The target state has typg(d, «),
meaning that its command has tygsd.. However, we cannot
simply make the type of thgoto command be typemd,—r
may be a type variable, and we assume that the sets of type
variables used in any two states are disjoint. Therefore, th
rule must translate type, valid for the target state, into an
appropriate typer’, valid for the source state. The rule uses
the same substitution operator as used earlier to perfoisn th
translation.

We sketch a proof that the Caisson type system enforcesgimin
sensitive noninterference in Appendix A.

3.2.1 Example

Here we use the type rules to show that specific parts of thaghea
program in the previous section are well-typed. We don’irstiee
entire type derivation, but we do show how both theoTto and
T-FALL rules are used.

Consider the code in Figuré®, and specifically the command
goto group(datal). The ruleT-coTofirst confirms that the type
of the argument (i.edatal, which is type H) satisfies the type
constraints of the targefroup, i.e., that L <: H—this is true. The
rule then finds a suitable type for theto command based on the
type of the target statgtoup, which is type L); hence the type of
thegoto command ismdy,.



Now consider the commangoto group(data2). By the
same logic this command is also typeddr, except that when
checking that the argument (i.@ata2, which is type L) satisfies
the type constraints, the rules confirms thakil, which is also
true. Sincemode is type L, the type of théf statement ixmd;,
which matches the declared type of stadgter.

From the above we can confirm that all transitiongtoup sat-
isfy the type constraints. When typiggoup itself, we assume that
the type constraints are met, i.e., thakLA. Hence, when typing
the false branch of th&# command ingroup the fall command,
using ruleT-FALL, is initially typed ascmd 4. However, by con-
travariance and since k: A, it can also be typed asnd;,. Since
the true branch is typedmd; (by the T-GoTo rule), theif com-
mand is well-typed asmd, which matches the declared type of
stategroup.

When checking state1, the declared type (i.esta(L <: A))
forces thdaf command to be typemd 4 ; the T-GoTOrules confirms
that is true for both branches of tilecommand. The same holds
true for states2.

Therefore each state of the program, and the entire program
itself, is well-typed.

4. Information-Flow Secure Processor

In this section we concretely demonstrate the utility ofssan by
designing and evaluating an information-flow secure preaethat
safely muliplexes execution tfustedanduntrustedcode. Securely
executing mixed-trust programs has historically beendaiffito get
right. For instance, all known cache attacks stem from ttgicba
problem that cache controllers must use both trusted amdsiad
information to decide which lines to evict from a cache [35].5
Information has been also shown to leak through branch gherdi
history table [5] or through the instruction cache lines [@ore
generally, any perturbation in the execution of a trustezy@m
based on untrusted data is a vulnerability, and we must ptale
possible sources of such information leaks.

We begin the section with a description of a complete four-
stage processor pipeline that securely implements a RIZC IS
We then extend the processor to include a cache hierarchystha
verifiably secure against all known attacks [35, 54]. The=sghs
demonstrate that Caisson’s language abstractions allevC#U
to be cleanly specified in a natural fashion and enable aatigti
verifiable, efficient design. For this processor design wplepthe
same two-level latticErusted C Untrusted as used ir§2.

4.1 Secure CPU Design

The public interface of a CPU is its Instruction Set Architee
(ISA). Table 1 describes the ISA of our processor; this isadard
ISA (derived from the commercial Altera Nios processor) e TBA
is implemented using a combination of hardware data- antt@en
flow controlled by the execution pipeline. Figure 7 showsfthe-
stage pipeline of our processor, with stages Fetch, Deéodsute,
and Commit. Additional microarchitectural features suskaches,
prefetchers, and branch predictors can be attached toghbna to
improve processor performance. Our processor implemeatste
to illustrate how these microarchitectural features cadésgned
for security; the other features can be implemented usimgjasi
strategies.

The easiest method to ensure thatrusted data can never
affectTrusted computation is to physically isolate them, i.e., have
two separate instances of the CPU, oneTfeiisted computation
and one forUntrusted computation. While simple and easy to
verify, economic reality means that this is not a practicdligon.
Even in high assurance systems the hardware componentieare o
shared, e.g., the Boeing 787 trusted aircraft control neé¢whares
the physical bus with the untrusted passenger network [15].

Instruction Description

jump If RegZero If the value of a register is zero then jump to the target.

jump To RegValue Jump to the address which is stored in specified register.

load Immediate Load an immediate value to a register.

Load/store data from/into an immediate memory address to a

load/store Direct )
register.

Joad PC To Reg Load the value of PC into a register (for store/restore context
purpose).

Load/store data from/into a memory address specified by a based

address in register and an offset. The global version operates on

data outside the current lease which is a range setup by the leaser

while the local version operates on local data inside current

memory bound.

load/store Indirect —global

load/store Indirect —local

directlump Directly jump to a target address.

and, or, not, xor, shl, shr,

Arithmetic instructions.
add, sub, cmpeq, cmpl

Table 1. The ISA of our RISC processor

Pipeline
T EEEEEEEE 1
1 1
: Fetch > Decode > Execute > Commit | !
1
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\ v
Instruction Other microarch state Registers Cache, Data
Memory Branchpred, etc. g Memory

Figure 7. A typical CPU pipeline and its interaction with memo-
ries, registers and other components. Our CPU design ingpltsm
all parts inbold.

The only alternative solution is time multiplexthe Trusted
andUntrusted computation on the same physical hardware. The
key to secure hardware design is to guarantee that any s&tges
due toUntrusted computation never affect arfrusted compu-
tation even when the computations share the same pipetigest
cache, and other processor features. Caisson’s languagaab
tions and type system collaborate to provide the hardwesigder
with the tools needed to easily encode and verify a securigrdes
In the remainder of the section we describe in detail the <0ais
implementation of our processor.

4.2 Secure Execution Pipeline

The execution pipeline is the backbone of the processor laad t
foundation of a secure design. Our goal is to takteiated context
(i.e., registers and memory) and a sepatatgusted contexand
use the same physical processor logic circuits to safelyabpe
on both. The resulting processor is a 32-bit RISC processir w
128KB each of Instruction and Data memory (64KB for the &dst
context and 64KB for the untrusted context), two progranmeers,
and 16 general purpose registers (split evenly betweerrikeetd
and untrusted contexts). There isiaglefour-stage pipeline shared
between the trusted and untrusted contexts (as well as a&i€ch
data cache, described in the next subsection). Figure 8sshow
state-machine diagram of the pipeline design.

This design interweaves tifrusted andUntrusted compu-
tation at a coarse granularity. There is a Reset state thetsr¢he
hardware state to its initial conditions and a Master stad ¢on-
trols the pipeline logic. The Master state sets a timer ataal
the pipeline to be used in alternate time intervals byTthested
and Untrusted computation. In this design, every stage of the
pipeline contains data from the same execution contexigted
or Untrusted). Figure 9 shows the hardware diagram of the cor-
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Figure 8. State Machine Diagram of the Coarse-Grained Time-
multiplexed Pipeline. The memory hierarchy shown in thendzsx
does not represent any concrete state in the state machiniej
included in our CPU and accessed by the pipeline.
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Figure 9. Synthesized hardware implementation of the Coarse-
Grained Time-multiplexed Pipeline CPU logic when the entir
pipeline is multiplexed betwednigh andlow code.

responding synthesized circuit. Figure 10 gives a skelefaime
Caisson code that implements the pipeline design (wherghHi
Context’ and 'LowContext’ stand for the untrusted and tedston-
texts, respectively). Note that the design uses nestegsstatal-
low verification of the design and parameterized statesaoestie
physical logic. In fact, this design is similar to the ExéontLease
controller design irg2.

4.2.1 Fine-Grained Sharing of Execution Pipeline

One possible drawback of the previous pipeline design isttiea
sharing betweefrusted andUntrusted computation is coarse-
grained; the time intervals during which they each have robnt
of the pipeline must be sufficiently large to counteract thstc
of stalling the pipeline each time the context is switchetiieen
them. An alternative design can share the pipeline at a muoeh fi
granularity, so thagach pipeline stageontinuously alternates be-
tweenTrusted andUntrusted computation at each cycle. This
design may be an attractive option when the computationct ea
security level requires a low latency response.

Figure 12 shows the intuition behind this design, along with
a state-machine diagram illustrating the design. Figuregités
a skeleton of the Caisson code that implements the desigih Ea
pipeline stage is initialized at a particular security lew® that
Fetch isTrusted, Decode i¥Jntrusted, Execute iSrusted, and
Commit isUntrusted. In each cycle (i.e., at each state transition

prog CPU = HighContext: H, LowContext:L, timer:L, mode:L
in let state reset:L() = {
mode :=0;
goto mastergroup()
}
state mastergroup:L() = {
let state master:L() = {
timer = ...
if mode then mode:=1; goto pipegroup(HighContext)
else mode:=0; goto pipegroup(LowContext)
}
state pipegroup:L(context:A) [L<A] = {
let state pipe:L() = {
/[Fetch, Decode, Execute, Commit
goto pipe()
}
in
if (timer==0) then goto master()
else timer := timer — 1; fall
}
in
fall
}

Figure 10. Implementation of the coarse-grained multiplexing
pipeline. The timer can be initialized to any number hencemé
the concrete value here.

prog CPU = F_init: L, D_init: H, E_init: L, C_init: H
in let state reset:L() = {
goto pipe(F_init, D_init, E_init, C_init)
}

state pipe:L(F_ctxt:A, D_ctxt: B, E_ctxt: A, C_ctxt: B) = {
/[Fetch, Decode, Execute, Commit
/I New context with security level B is obtained for Fetch
/I Each stage calculates and updates their context
goto pipe(newF_ctxt, F_ctxt, D_ctxt, E_ctxt)

}

Figure 11. Implementation of the fine-grained multiplexing
pipeline using Caisson

goto), the security context at one stage is passed on to the next
stage in turn.

4.3 Secure Cache Design

A secure execution pipeline prevents information leakshaed-
ware data- and control-flow, but information can still bekks

via microarchitectural features such as cache memory. ¥ame
ple, there are well-known security attacks that exploit aret
memory to covertly communicate between two supposedly iso-
lated processes by selectively causing page faults andftec
misses [5, 35]. We implement a secure cache for our processor
sign to illustrate how to secure microarchitectural feasyrother
features, such as branch predictors, can be securely irepteh
using similar strategies.

As with the execution pipeline, there are two basic appreach
to securing the cache: physical isolation (staticallyifiarting the
cache betweefTrusted and Untrusted data) or time multi-
plexing (sharing the cache, but flushing it each time the gssor
switches between therusted andUntrusted contexts). In this
case, unlike the pipeline, the extreme cost of flushing tltheat
each context switch means that partitioning the cache iptbe
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Figure 12. Fine-Grained Pipeline Multiplexing. (a) Intuition be-
hind the design (b) State Machine Diagram

ferred solution. Other existing work has come to the sameloen
sion [54]. Our contribution is not the design of a secure eath
self, but the fact that a secure cache can be easily impleaent
and statically verified using Caisson, as well as securéggnated
into a larger secure system (i.e., our processor). Statification

is important—previous work on secure cache design [54] kas b
shown to possess subtle flaws that violate security [26].

In Caisson, the implementation of a partitioned cache ipkEm
the design passes the particular cache partition eachxtieuld
use as part of the context information for the parameteritates.

In Figure 10, the cache partitions would be part of 'High@outit
and 'LowContext’. Equally as important as the cache memory
itself is the cache controller—the logic that processededtts
and misses. Unlike the cache memory, the cache controltebea
shared among the different security levels in the same mame
the execution pipeline.

4.4 Evaluation

We have proven that Caisson gaurantees the security of ocepr
sor design, but an interesting question is how the resuttegign
performs in comparison to existing processor designs, trath-

tional insecure processors and other processors designext-f
curity. The relevant performance metrics are: synthesig {how
long it takes to transform a high-level design into an actirabit);

chip area (how large the resulting circuit is); delay (ipedy pro-
portional to clock frequency); and power (the power constimnp
of the circuit).

4.4.1 Synthesis Methodology

To quantify the hardware design overhead introduced by pur a
proach we compare our processor desigGaigsor) with a non-
secured, simplified version of the commercial Nios Proaesso

Synthesis Time (min) 1:50 153:56 83.96X 4:04 2.22X
1.35X
1.46X
1.09X

38462.86
2.96
614.148

128506.89
7.79
1730

3.34X
2.63X
2.82X

52088.78
4.32
666.912

Area (pm?)
CPU delay (ns)
Power (LW)

Table 2. Synthesized results of the different CPU designs: the
simplified Nios Processor (Base), the GLIFT-based CPU, had t
Caisson-based CPU.

security widgets provided by the Caisson language andcatigti
partitioned all registers, caches, and memories Tiosted and
Untrusted. To get theGLIFT implementation, we first synthe-
sized theBasedesign into a gate level netlist and then augmented
the netlist with shadow logic to track information flow. Wespad

the BaseandCaissondesigns through Altera’s Quartusll v8.0 tool
to synthesize the designs onto a Stratix || FPGA for functiaest-

ing and verification. We then obtain the area, timing and powe
results using the Synopsis Design Compiler and the SAED 90nm
technology library [1] assuming a switching activity factd 50%

for the circuit.

4.4.2 Results

Almost as important as the quantitative performance resué the
qualitative results of how easy each design was to implement—
this is an important test for the usability of a language. W fi
anecdotally that Caisson is easily usable by a programraerett

in Verilog. The originaBasedesign required 709 lines of Verilog—
the correspondin@aissondesign required only 724 lines and took
little additional time to implement. By contrasgLIFT required
us to make a hard choice: we could either (1) manually design t
gate-level netlist at a structural level (i.e., manuallggd the logic
gates to create the design), which in our experience issitfkafor
such a complex design; or (2) generate a gate-level nathist the
behavioral Verilog design using an existing tool, then enatically
generate the GLIFT shadow logic using the resulting netité
used the latter option, and while it simplifies the procegstlie
programmer the resulting design is intractably difficultdebug
and optimize.

Table 2 gives the performance figures for each design. We give
the concrete numbers for all three designs as well as naredhli
numbers forCaissonandGLIFT (usingBaseas a baseline). The
area numbers do not include the memory hierarchy sinceraléth
designs use an identical memory configuration. The power-num
bers include both dynamic and leakage power. Ghé~T design
comes with a large overhead in all four performance categatiie

(Basg and the same Nios processor augmented to dynamically to the shadow logic that GLIFT introduces to the processhis T

track information flow using GLIFTGLIFT ) [46]. GLIFT imple-
ments full system information flow tracking at the logic gkeeel:
it associates each bit in the system with a taint bit indicaiis
security level, and augments each gate in the hardwarerdesiy
additional gates that compute taint propagation.

All CPUs have identical functionality and configuration.wto
ever bothCaissonand GLIFT can only utilize half of the cache
and memory capacity effectively although they have idahtion-
figuration as théBaseprocessor. The reason is that in our Caisson
design the memory and cache have to be partitioned into twis pa
with different security levels, whil&LIFT needs to associate a
one-bit tag for each bit in the memory and cache. Increasieg t
cache and memory utilization efficiency fGaissonis part of our
future work.

We implemented théBase processor (from the Nios design)
in Verilog with no additional security features. To get thai$
son implementation we remodeled tBaseimplementation using

shadow logic takes a long time to synthesize, requires & leingp
area, consumes a great deal of power, and drastically shenso-
cessor cycle frequency.

Caisson in contrast, has a much lower overhead, though it is
certainly not free. This overhead mainly comes from two sesr
the duplicated state (i.e., registers) and the additioneb@ers and
decoders used to multiplex the partitioned state onto threedagic
circuits. We note that the overhead generated byGassonde-
sign does not grow with CPU complexity (e.g., number of func-
tional units)—a more powerful and complex CPU would not re-
quire any additional overhead, while tB&IFT design’s overhead
would proportionately with the CPU complexity. For perhaps the
most important performance metric, pow€gissoris overhead is
almost negligible. The synthesis time for the Caisson desig
cludes type-checking, which is sufficient to verify the des se-
curity. The GLIFT synthesis time doem®t include verification—
GLIFT only detect security violations at runtime.



These results show that designing a secure processor usisig C
son not only provides a strong static guarantee about irgtom
flow security, but also (1) allows a more straightforward aatlural
way of designing a secure processor, and (2) introduces hegsh
area, timing and power overhead than dynamic tracking tqoks
such as GLIFT.

5. Related Work

Secure information flow has been widely studied; a survey by
Sabelfeld and Myers [39] gives a comprehensive summaryisf th
work. Here we concentrate on (1) hardware-assisted secfme i
mation flow, and (2) analyzing hardware designs for secum-in
mation flow, for both secrecy and integrity. Although the oept

of integrity has sometimes been generalized to includer qifap-
erties such as program correctness [17, 30], we deal onlyiwt
formation integrity in this paper.

A number of papers deal with timing-sensitive secure inform
tion flow for programming languages [8-10, 21, 37, 42, 52, 56]
These papers enforce timing-sensitivity by restrictingipatation,
e.g., by not allowing any branches or loops on high infororati
These restrictions wouldn't allow for any useful hardwaesigns
and so these works can'’t be used in Caisson; instead, we dake a
vantage of the characteristics of sychronous hardware foren
timing sensitivity (as explained in Appendix A).

5.1 Hardware-Assisted Secure Information Flow

Secure information flow has been enforced at a variety of lev-
els of abstraction in computer systems. At the programmémg |
guage level information flow can be enforced statically .(evia
a type system [33, 53]) or dynamically [29, 36]. At lower l&v/e
of abstraction dynamic enforcement is the norm. Projeath si$
LoStar [59], HiStar [58] and Flume [28] apply distributedarma-
tion flow control (DIFC) [57] through general-purpose opigrg
system abstractions. Tag-based tracking at the virtuahmegcar-
chitecture, or ISA levels is a popular dynamic solution ttnatks
information flows through all registers and memory [12, 18,38,
43, 49, 50].

However, even hardware-assisted secure-information flkt
ing does not go below the ISA abstraction level to accountrfor
croarchitectural features such as pipelining and cachereTare
existing dedicated secure cache [54] and memory contr{3@&r
designs, however these designs only enforce informatiengtmi-
cies for specific components in the computer architecttig;ex-
isting work does not address the entire processor desigrdaes
it provide a general methodology for designing secure hardw

5.2 Information Flow Analysis for Hardware Design

The traditional method for checking the security of a hamwa
design is to simulate and extensively test the design, aitalmand
expensive process. While static analysis [19, 22, 23, 40 aodel
checking [11] are often used féunctionalverification, they are not
often used to check security. Tolstrup et al [47, 48] descailtype-
system based information flow analysis to verify hardwaoeisty
policies for VHDL designs. Their work is limited to analygin
simple cryptographic hardware designs, and as pointedyui b
et al [31], directly applying conventional information flamalysis
to existing hardware description languages often leadspogcise
results.

Unlike the existing work, Caisson extends HDLs like VHDL
and Verilog with language abstractions that specificalfgeapre-
cise static verification of hardware designs.

6. Conclusion

Hardware mechanisms for information flow control often faima
root of trust in high assurance systems and are used to ergotie
cies such as non-interference. While programming langtecie
niques have been used extensively for creating secure a@ftw
languages to create information-flow secure hardware hatveen
ceived much attention. We combine insights from traditidye-
based secure languages with domain-specfic design patteeds
for hardware design and present a new hardware descrigtion |
guage, Caisson, for constructing statically-verifiableuse hard-
ware designs. By formalizing certain security design pagend
providing direct language support for enforcing their ectruse,
Caisson promotethinking about secure hardware design in new,
useful ways that don'’t naturally arise in existing langusadésing
Caisson, we are able to express information flow control mech
nisms in a natural manner and quickly verify a variety of dove
secure hardware designs. In particular, we show how thghtssi
gained from developing Caisson allow us to design the first ev
implementation of a pipelined processor that verifiablyoetés
noninterference.

A. Proof of Noninterference

We sketch a proof that Caisson enforces timing-sensitivénao
terference between security levels. The invariant that vgh o
enforce is that an observer at security le¢etannot distinguish
between two runs of the same program that differ only in the in
formation at security level§' Z ¢. Because Caisson models syn-
chronous hardware designs there are two important imitst
that we leverage: (1) observers can see the stores only anthe
of each cycle, i.e., they cannot see changes to the storeappen
during a cycle until that cycle ends; and (2) the length oftibe-
tween two sequentigloto commands islwaysexactly one cycle,
regardless of the number of semantic steps taken. Theseatus f
are justified by the synchronous nature of the hardware: ipe fl
flops only read in new values on a clock edge, and the clock fre-
quency is set so that each state (corresponding to a cordniabt
circuit) is guaranteed to have completed within one cycle.

We define “distinguishability” using the-equivalenceelation
defined below. We then give a set of lemmas and our main nonin-
terference theorem.

A.1 L-equivalence

First we define the set of security typeshat an observer at secu-
rity level £ can observe. This includes base types that are subtypes
of ¢ as well as type variables of state parameters that the ¢urren
environmenty maps to registers whose base types are subtypes of
£. Formally, for a given security levéland environment let L =
the minimum fixpoint of(¢’ | ¢ C £} U{«a | Jv € dom(y).v:
aANvy(v) € L}. ThenletH = {r | 7 ¢ L}, i.e., the security
types that an observer at levetan't distinguish. Typed. and H
are always with respect to some environment

We lift the type constructors and typing relation to operate
L and H in the obvious way. We now usé and H to define
theL-equivalenceelation~; on stores, environments, commands,
and configurations such thatequivalent items are indistinguish-
able from each other for ah-observer.

e Environment: Two environments are equivalenii( ~; ~2)
if they cannot be used to create effects distinguishablerby a
L-observer. This means that (1) any writallletyped state
parameter (i.e., not from afi/-typed state) must be mapped
to the same register in both environments; and (2) imaps a
labell to an L-typed state then so must and vice-versa:



= For all parameters of any statd : stz (&, k), v: L W.r.t.
eithery; or vz = v1(v) = v2(v), and

2 Vi.y1(l):str(a@, k) Vy2(l):str(a, k) = v1(l) = v2(1)

e Store: Two stores are equivalent if they agree on all values that
can be seen by ab-observer. Let thé¢z, operator project out all
registers with typed from a store (since registers always have
a base type we don't needto determinef{); theno; ~; o2 if

(01 1) = (o2 |1)

Command: Two commands are equivalent w.r.t. an environ-
menty (c1 ~} ¢2) if (1) they are the same command and both
typedcmd;, w.r.t. v, hence will modify state in the same way;
or (2) both commands are typethdy w.r.t -, hence cannot
modify state that id.-observable:

"¢y =c2ANci:cmdp Ace:cmdr, OF

L] (Cl :cmdyg A co: Cde)

Configuration: Two configurations are equivalerit{ ~; Cz)
if their stores, environments, and commands are equivateht
they have the same timéy s.t.y1 ~p Y Av2 ~p Y Ac1 ~]
ca2 N\ o1 NLO'Q/\51 =2

A.2 Lemmas

This section introduces a set of lemmas that we use for the non
interference proof. Simple security states that an exmess: L
contains only low sub-expressions, while confinement stttat
c:cmdy cannot create any effects involvidgtyped variables. The
typesL and H are with respect to a well-formed environment

Lemma 1 (Simple Security) e: L = no sub-expression efhas
type H.

Proof. By induction on the structure ef |

Lemma 2 (Confinement) c¢: emdy = evaluatinge using environ-
menty and some store does not modify the value of any variable
or register with typel_.

Proof. By induction on the structure of |

Lemma 3 (Subject Reduction) (c, v, o,68) ~ (¢',v',0’,d) and
c:emdy Wty = ¢ emdy W.rt. '

Proof. By induction on the structure of |

A.3 Noninterference

We now come to the noninterference theorem itself, whichi$ol
for all well-typed Caisson programs. Recall that becauseldh-

guage models synchronous hardware, we assume that changes t

the store are only visible upon a state transition and tha tnly
increments at state transitions (regardless of the nunfisamoan-

tic steps taken). With that in mind, we give the nonintenfeesthe-
orem below. It states that given two configuratidis and Cg,
both of which ard.-equivalent and start at the root command, when
the resulting evaluations each reach a state transitien §igoto)

the resulting new configurations must also/bequivalent.

Theorem 1 (Noninterference)
Let

e Cy = <3rroot7 ’YA70'A75A>
o Cy = (Froot,V'a,0%,04+1)
e Cp = <?root7VB7UB75B>
° C/B = <g:r00t7 ')/B7U/B763+1>

Then
Ca ~* (C;‘/\(CB ~* C5 NCa NL(CB:>(C£4 ~p Cp

Proof. By induction on the steps of the computation and Lemmas
1,2, and 3. |

The proof itself is straightfoward and omitted for spaceteéNo
that the noninterference theorem is timing-sensitiveudrgntees
that given two L-equivalent configurations, a Caisson program
must make identical-observable changes the same timesnder
both configurations (where time is measured as humber oés).cl
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